Skip to content

Research at St Andrews

Multicenter validation of the CamGFR model for estimated glomerular filtration rate

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Edward H. Williams, Claire M. Connell, James M. J. Weaver, Ian Beh, Harry Potts, Cameron T. Whitley, Nicholas Bird, Tamer Al-Sayed, Martin Fehr, Richard Cathomas, Gianfilippo Bertelli, Amy Quinton, Paul Lewis, Jonathan Shamash, Peter Wilson, Michael Dooley, Susan Poole, Patrick B. Mark, Michael Bookman, Helena Earl & 4 more Duncan Jodrell, Simon Tavaré, Andy Lynch, Tobias Janowitz

School/Research organisations

Abstract

Important oncological management decisions rely on kidney function assessed by serum creatinine-based estimated glomerular filtration rate (eGFR). However, no large-scale multicentre comparison of methods to determine eGFR in patients with cancer are available. To compare the performance of formulas for eGFR based on routine clinical parameters and serum creatinine not calibrated with isotope dilution mass spectrometry (non-IDMS), we studied 3,620 patients with cancer and 166 without cancer who had their GFR measured with an exogenous nuclear tracer at one of seven clinical centres. The mean measured GFR was 86 ml/min. Accuracy of all models was centre-dependent, reflecting inter-centre variability of non-IDMS creatinine measurements. CamGFR was the most accurate model for eGFR (root-mean-squared-error (RMSE) 17.3 ml/min) followed by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) model (RMSE 18.2 ml/min).Important oncological management decisions rely on kidney function assessed by serum creatinine-based estimated glomerular filtration rate (eGFR). However, no large-scale multicentre comparison of methods to determine eGFR in patients with cancer are available.

To compare the performance of formulas for eGFR based on routine clinical parameters and serum creatinine not calibrated with isotope dilution mass spectrometry (non-IDMS), we studied 3,620 patients with cancer and 166 without cancer who had their GFR measured with an exogenous nuclear tracer at one of seven clinical centres. The mean measured GFR was 86 ml/min. Accuracy of all models was centre-dependent, reflecting inter-centre variability of non-IDMS creatinine measurements. CamGFR was the most accurate model for eGFR (root-mean-squared-error (RMSE) 17.3 ml/min) followed by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) model (RMSE 18.2 ml/min).Important oncological management decisions rely on kidney function assessed by serum creatinine–based estimated glomerular filtration rate (eGFR). However, no large-scale multicenter comparisons of methods to determine eGFR in patients with cancer are available. To compare the performance of formulas for eGFR based on routine clinical parameters and serum creatinine not calibrated with isotope dilution mass spectrometry, we studied 3620 patients with cancer and 166 without cancer who had their glomerular filtration rate (GFR) measured with an exogenous nuclear tracer at one of seven clinical centers. The mean measured GFR was 86 mL/min. Accuracy of all models was center dependent, reflecting intercenter variability of isotope dilution mass spectrometry–creatinine measurements. CamGFR was the most accurate model for eGFR (root-mean-squared error 17.3 mL/min) followed by the Chronic Kidney Disease Epidemiology Collaboration model (root-mean-squared error 18.2 mL/min).
Close

Details

Original languageEnglish
Article numberpkz068
Number of pages4
JournalJNCI Cancer Spectrum
Volume3
Issue number4
Early online date19 Sep 2019
DOIs
Publication statusPublished - Dec 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

    PCAWG Structural Variation Working Group, PCAWG Consortium, Rodriguez-Martin, B., Alvarez, E. G., Baez-Ortega, A., Zamora, J., Supek, F., Demeulemeester, J., Santamarina, M., Ju, Y. S., Temes, J., Garcia-Souto, D., Detering, H., Li, Y., Rodriguez-Castro, J., Dueso-Barroso, A., Bruzos, A. L., Dentro, S. C., Blanco, M. G., Contino, G. & 34 others, Ardeljan, D., Tojo, M., Roberts, N. D., Zumalave, S., Edwards, P. A. W., Weischenfeldt, J., Puiggròs, M., Chong, Z., Chen, K., Lee, E. A., Wala, J. A., Raine, K., Butler, A., Waszak, S. M., Navarro, F. C. P., Schumacher, S. E., Monlong, J., Maura, F., Bolli, N., Bourque, G., Gerstein, M., Park, P. J., Wedge, D. C., Beroukhim, R., Torrents, D., Korbel, J. O., Martincorena, I., Fitzgerald, R. C., Van Loo, P., Kazazian, H. H., Burns, K. H., Campbell, P. J., Tubio, J. M. C. & Lynch, A. G., Mar 2020, In : Nature Genetics. 52, 3, p. 306-319

    Research output: Contribution to journalArticle

  2. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing

    PCAWG Structural Variation Working Group, PCAWG Consortium, Cortés-Ciriano, I., Lee, J. J-K., Xi, R., Jain, D., Jung, Y. L., Yang, L., Gordenin, D., Klimczak, L. J., Pellman, D. S., Park, P. J. & Lynch, A. G., Mar 2020, In : Nature Genetics. 52, 3, p. 331-341

    Research output: Contribution to journalArticle

  3. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer

    PCAWG Structural Variation Working Group, PCAWG Consortium, Akdemir, K. C., Le, V. T., Chandran, S., Li, Y., Verhaak, R. G., Beroukhim, R., Campbell, P. J., Chin, L., Dixon, J. R. & Lynch, A. G., Mar 2020, In : Nature Genetics. 52, 3, p. 294-305

    Research output: Contribution to journalArticle

  4. Pan-cancer analysis of whole genomes

    The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, Campbell, P. J., Getz, G., Korbel, J. O., Stuart, J. M., Jennings, J. L., Stein, L. D., Perry, M. D., Nahal-Bose, H. K., Ouellette, B. F. F., Li, C. H., Rheinbay, E., Nielsen, G. P., Sgroi, D. C., Wu, C. L., Faquin, W. C., Deshpande, V., Boutros, P. C., Lazar, A. J., Hoadley, K. A. & 31 others, Louis, D. N., Dursi, L. J., Yung, C. K., Bailey, M. H., Saksena, G., Raine, K. M., Buchhalter, I., Kleinheinz, K., Schlesner, M., Zhang, J., Wang, W., Wheeler, D. A., Ding, L., Simpson, J. T., O’Connor, B. D., Yakneen, S., Ellrott, K., Miyoshi, N., Butler, A. P., Royo, R., Shorser, S. I., Vazquez, M., Rausch, T., Tiao, G., Waszak, S. M., Rodriguez-Martin, B., Shringarpure, S., Wu, D. Y., Demidov, G. M., Delaneau, O. & Lynch, A. G., 6 Feb 2020, In : Nature. 578, 7793, p. 82-93 12 p.

    Research output: Contribution to journalArticle

ID: 259452795

Top