Skip to content

Research at St Andrews

Nano-composite structural Ni-Sn alloy anodes for high performance and durability of direct methane-fueled SOFCs

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Jaeha Myung, S.-D. Kim, Tae Ho Shin, D. Lee, John Thomas Sirr Irvine, J. Moon, S.-H. Hyun

School/Research organisations

Abstract

Ni-based cermets have commonly been used as anode materials with good catalytic properties for hydrocarbon fuels. However, carbon deposition can occur due to the non-ideal electrochemical reaction of hydrocarbon fuel and the structural limitation resulting from the unsymmetrical Ni-based anode-supported single cells. This critical problem leads to loss of cell performance and poor long-term stability of solid oxide fuel cells (SOFCs). Our designed anode material with an extremely small amount (0.5 wt%) of Sn catalyst incorporated into the Ni and nano-composite structure was employed not only to prevent carbon deposition in oxygen deficient areas found for unsymmetrical cells, but also to increase the cell performance due to its excellent microstructure. The nano-composite Sn doped Ni-GDC cells showed a power density of 0.93 W cm-2 with stable operation in dry methane at 650°C.
Close

Details

Original languageEnglish
Pages (from-to)13801-13806
Number of pages6
JournalJournal of Materials Chemistry A
Volume3
Issue number26
Early online date9 Jun 2015
DOIs
Publication statusPublished - 14 Jul 2015

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

  4. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  5. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

Related by journal

  1. A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis

    Grzybek, J., Roth, W. J., Gil, B., Korzeniowska, A., Mazur, M., Čejka, J. & Morris, R. E., 7 Apr 2019, In : Journal of Materials Chemistry A. 7, 13, p. 7701-7709 9 p.

    Research output: Contribution to journalArticle

  2. Exsolution of Fe-Ni alloy nanoparticles from (La,Sr)(Cr,Fe,Ni)O3 perovskites as potential oxygen transport membrane catalysts for methane reforming

    Papargyriou, D., Miller, D. N. & Irvine, J. T. S., 14 Jul 2019, In : Journal of Materials Chemistry A. 7, 26, p. 15812-15822 11 p.

    Research output: Contribution to journalArticle

  3. Ultrafast post-synthetic modification of a pillared cobalt(II)-based metal-organic framework via sulfurization of its pores for high-performance supercapacitors

    Abazari, R., Sanati, S., Morsali, A., Slawin, A. M. Z., Carpenter-Warren, C. L., Chen, W. & Zheng, A., 21 May 2019, In : Journal of Materials Chemistry A. 7, 19, p. 11953-11966 14 p.

    Research output: Contribution to journalArticle

  4. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells

    Hou, J., Miao, L., Hui, J., Bi, L., Liu, W. & Irvine, J. T. S., 14 Jun 2018, In : Journal of Materials Chemistry A. 6, 22, p. 10411-10420 10 p.

    Research output: Contribution to journalArticle

ID: 204796610

Top