Skip to content

Research at St Andrews

Natural analogue constraints on Europa's non-ice surface material

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Mark G. Fox-Powell, Gordon R. Osinski, Daniel Applin, Jessica M. Stromberg, Fernando Gázquez, Ed Cloutis, Elyse Allender, Claire R. Cousins

School/Research organisations

Abstract

Non‐icy material on the surface of Jupiter's moon Europa is hypothesised to have originated from its subsurface ocean, and thus provide a record of ocean composition and habitability. The nature of this material is debated, but observations suggest that it comprises hydrated sulfate and chloride salts. Analogue spectroscopic studies have previously focused on single phase salts under controlled laboratory conditions. We investigated natural salts from perennially cold (<0 °C) hypersaline springs, and characterised their reflectance properties at 100 K, 253 K and 293 K. Despite similar major ion chemistry, these springs form mineralogically diverse deposits, which when measured at 100 K closely match reflectance spectra from Europa. In the most sulfate‐rich samples, we find spectral features predicted from laboratory salts are obscured. Our data are consistent with sulfate‐dominated europan non‐icy material, and further, show that the emplacement of endogenic sulfates on Europa's surface would not preclude a chloride‐dominated ocean.
Close

Details

Original languageEnglish
Pages (from-to)5759-5767
Number of pages9
JournalGeophysical Research Letters
Volume46
Issue number11
Early online date4 Jun 2019
DOIs
Publication statusPublished - 16 Jun 2019

    Research areas

  • Europa, Planetary analogues, Near-infrared reflectance spectroscopy, Brines, Arctic, Salts

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Multiscale and multispectral characterization of mineralogy with the ExoMars 2020 rover remote sensing payload

    Allender, E. J., Cousins, C. R., Gunn, M. D. & Caudill, C. M., 22 Apr 2020, In: Earth and Space Science. 7, 4, 18 p., e2019EA000692.

    Research output: Contribution to journalArticlepeer-review

  2. UV luminescence characterisation of organics in Mars-analogue substrates

    Laurent, B., Cousins, C. R., Gunn, M., Huntly, C., Cross, R. & Allender, E., 15 Mar 2019, In: Icarus. 321, p. 929-937

    Research output: Contribution to journalArticlepeer-review

  3. The ExoMars Spectral Tool (ExoSpec): an image analysis tool for ExoMars 2020 PanCam imagery

    Allender, E., Stabbins, R., Gunn, M., Cousins, C. R. & Coates, A., 9 Oct 2018, Image and Signal Processing for Remote Sensing XXIV. Bruzzone, L. & Bovolo, F. (eds.). 19 p. 107890I. (Proceedings of SPIE; vol. 10789).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. Partitioning of crystalline and amorphous phases during freezing of simulated Enceladus ocean fluids

    Fox‐Powell, M. G. & Cousins, C. R., 6 Jan 2021, In: Journal of Geophysical Research: Planets. 126, 1, 16 p., e2020JE006628.

    Research output: Contribution to journalArticlepeer-review

  5. The identification of sulfide oxidation as a potential metabolism driving primary production on late Noachian Mars

    Macey, M. C., Fox-Powell, M., Ramkissoon, N. K., Stephens, B. P., Barton, T., Schwenzer, S. P., Pearson, V. K., Cousins, C. R. & Olsson-Francis, K., 2 Jul 2020, In: Scientific Reports. 10, 10941.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Biological cohesion as the architect of bed movement under wave action

    Chen, X., Zhang, C., Townend, I., Paterson, D. M., Gong, Z., Jiang, Q., Feng, Q. & Yu, X., 14 Jan 2021, In: Geophysical Research Letters.

    Research output: Contribution to journalArticlepeer-review

  2. Classifying oceanographic structures in the Amundsen Sea, Antarctica

    Boehme, L. & Rosso, I., 27 Jan 2021, (Accepted/In press) In: Geophysical Research Letters.

    Research output: Contribution to journalArticlepeer-review

  3. The effect of melt pond geometry on the distribution of solar energy under first-year sea ice

    Horvat, C., Flocco, D., Rees Jones, D. W., Roach, L. & Golden, K. M., 17 Feb 2020, In: Geophysical Research Letters. 47, 4, e2019GL085956.

    Research output: Contribution to journalArticlepeer-review

  4. Wind-driven evolution of the North Pacific subpolar gyre over the last deglaciation

    Gray, W. R., Wills, R. CJ., Rae, J. W. B., Burke, A., Ivanovic, R. F., Roberts, W. HG., Ferreira, D. & Valdes, P. J., 17 Mar 2020, In: Geophysical Research Letters. 47, 6, e2019GL086328.

    Research output: Contribution to journalArticlepeer-review

  5. Accelerated Volume Loss in Glacier Ablation Zones of NE Greenland, Little Ice Age to Present

    Carrivick, J. L., Boston, C. M., King, O., James, W. H. M., Quincey, D. J., Smith, M. W., Grimes, M. & Evans, J., 16 Feb 2019, In: Geophysical Research Letters. 46, 3, p. 1476-1484 9 p.

    Research output: Contribution to journalArticlepeer-review

ID: 258819747

Top