Skip to content

Research at St Andrews

NbTi0.5Ni0.5O4 as anode compound material for SOFCs

Research output: Contribution to journalArticlepeer-review

Author(s)

Samir Boulfrad, Mark Cassidy, John Thomas Sirr Irvine

School/Research organisations

Abstract

NbTi0.5Ni0.5O4 (NTNO) has been prepared using solid state synthesis and investigated as a potential anode material. The oxide form of NTNO has single phase rutile-type structure with tetragonal (P42/mnm) space group. The reduced form is a composite of nano-scaled particles of metallic Ni and Nb1.33Ti0.67O4 phase. Reduced NTNO showed high electronic conductivity up to 280 S.cm− 1 at 900 °C in reducing atmosphere, but suffers from low CTE equal to 3.78 10− 6 K− 1. Studies of NTNO as anode material were carried out in a three electrode – electrochemical half cell configuration under pure humidified H2 at 900 °C using a 2 mm thick zirconia electrolyte and without any additional current collector material. The results show a reasonable series resistance (Rs) equal to 2.7 Ωcm2 (about 50% higher than for metallic gold layers) indicating a good current collection performance for a 10 μm layer of material. The polarization resistance (Rp) was equal to 33 Ωcm2 and is attributed to a poor density of three phase boundaries (TPB) and shortage of oxide ion conduction in the anode layer. The results show the potential of NTNO as an anode material, especially after optimization of the microstructure towards the increase of TPB length.
Close

Details

Original languageEnglish
Pages (from-to)37-41
JournalSolid State Ionics
Volume197
Issue number1
DOIs
Publication statusPublished - 2011

    Research areas

  • SOFC, Anode, NbTi0.5Ni0.5O4, Reduction–oxidation, Electronic conductivity, Impedance spectroscopy

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  2. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  3. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  4. Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration

    Price, R., Cassidy, M., Grolig, J. G., Longo, G. G., Weissen, U. G., Mai, A. G. & Irvine, J. T. S., 12 Feb 2021, In: Advanced Energy Materials. Early View, 21 p., 2003951.

    Research output: Contribution to journalReview articlepeer-review

  5. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 15507977

Top