Skip to content

Research at St Andrews

Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: constraints on the early crustal evolution of the Yangtze Block

Research output: Contribution to journalArticle

Open Access Status

  • Embargoed (until 24/07/20)

Author(s)

Tianyu Zhao, Peter A. Cawood, Kai Wang, Jian-Wei Zi, Qinglai Feng, Quyen Minh Nguyen, Dung My Tran

School/Research organisations

Abstract

Precambrian igneous and metamorphic rocks of the Phan Si Pan Complex, North Vietnam, constitute the southern extension of the Yangtze Block, and provide a valuable record of the early evolution of the continental crust. We present results of U-Pb zircon geochronology and geochemistry for Precambrian granites in this complex to constrain their emplacement age and genesis. Granites from three plutonic bodies yielded ages of 2848 ± 15 Ma, 2768 ± 19 Ma and 1869 ± 30 Ma, which represent newly-recognized late Archean to Paleoproterozoic potassic granite plutonism in the southern Yangtze Block. The average εHf(t) values range from −6.2 to 0.1 for the 2.85–2.77 Ga granitic rocks and -13.1 to -9.2 for the ca. 1.86 Ga granitic rocks, with two-stage model ages of 3.64 to 3.20 Ga and 3.31 to 3.07 Ga, respectively, suggesting derivation from partial melting of Paleoarchean and Mesoarchean crust. The late Archean potassic granites exhibit high K2O, and high Sr/Y and (La/Yb)N ratios with negligible Eu anomalies, indicating derivation from melting of the thickened lower crust, which is inferred to have occurred in an active margin setting. The late Paleoproterozoic alkali feldspar granites are characterized by high FeOT/(FeOT + MgO)(0.96–0.99) and 10000∗Ga/Al (2.75–2.94) ratios, showing an affinity of A-type granite. These A-type granites exhibit flat chondrite-normalized HREE patterns and strong negative Eu anomalies, and low Sr/Y and (La/Yb)N ratios, corresponding to melting at a shallow depth, probably in a post-collisional extension setting.

Comparison of the rock units and events recorded by the Phan Si Pan complex with other Archean to Paleoproterozoic complexes (Houhe, Dongchuan, Yudongzi, Douling, Zhongxiang and Kongling complexes) in the Yangtze Block indicate spatially distinct histories of crustal growth, and thus may reflect independent terranes. The ca. 1.86 Ga post-collisional magmatism, which succeeds a 2.0–1.9 Ga metamorphic event, is distributed throughout the Yangtze Block, including the Phan Si Pan Complex, suggesting assembly of the disparate terranes and final cratonization of the Yangtze Block overlaps with, and may be related to, assembly of the Nuna supercontinent.

Close

Details

Original languageEnglish
Article number105395
JournalPrecambrian Research
Volume332
Early online date24 Jul 2019
DOIs
Publication statusPublished - 15 Sep 2019

    Research areas

  • Zircon U-Pb-Hf isotopes, Geochemistry, Yangtze Block, Neoarchean, Paleoproterozoic, Nuna supercontinent

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Jiangnan Orogen, South China: a ~970–820 Ma Rodinia margin accretionary belt

    Yao, J., Cawood, P. A., Shu, L. & Zhao, G., Sep 2019, In : Earth Science Reviews. 196

    Research output: Contribution to journalArticle

  2. Implications of 770 Ma Rhyolitic Tuffs, eastern South China Craton in constraining the tectonic setting of the Nanhua Basin

    Qi, L., Xu, Y., Cawood, P. A., Wang, W. & Du, Y., Jan 2019, In : Lithos. 324-325, p. 842-858

    Research output: Contribution to journalArticle

Related by journal

  1. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

    Baker, T. R., Prave, A. R. & Spencer, C. J., Aug 2019, In : Precambrian Research. 329, p. 224-231

    Research output: Contribution to journalArticle

  2. A window into an ancient backarc? The magmatic and metamorphic history of the Fraser Zone, Western Australia

    Glasson, K. J., Johnson, T. E., Kirkland, C. L., Gardiner, N. J., Clark, C., Blereau, E., Hartnady, M. I. H., Spaggiari, C. & Smithies, H., Apr 2019, In : Precambrian Research. 323, p. 55-69 15 p.

    Research output: Contribution to journalArticle

  3. Low δ18O rocks in the Belomorian belt, NW Russia, and Scourie dikes, NW Scotland: a record of ancient meteoric water captured by the early Paleoproterozoic global mafic magmatism

    Zakharov, D. O., Bindeman, I. N., Serebryakov, N. S., Prave, A. R., Azimov, P. Y. & Babarina, I. I., 1 Oct 2019, In : Precambrian Research. 333, 105431.

    Research output: Contribution to journalArticle

ID: 260291476

Top