Skip to content

Research at St Andrews

Neodymium isotopes and concentrations in aragonitic scleractinian cold-water coral skeletons - Modern calibration and evaluation of palaeo-applications

Research output: Contribution to journalArticle

Author(s)

Torben Struve, Tina van de Flierdt, Andrea Burke, Laura F. Robinson, Samantha J. Hammond, Kirsty C. Crocket, Louisa I. Bradtmiller, Maureen E. Auro, Kais J. Mohamed, Nicholas J. White

School/Research organisations

Abstract

Cold-water corals (CWCs) are unique archives of mid-depth ocean chemistry and have been used successfully to reconstruct the neodymium (Nd) isotopic composition of seawater from a number of species. High and variable Nd concentrations in fossil corals however pose the question as to how Nd is incorporated into their skeletons.
We here present new results on modern specimens of Desmophyllum dianthus, Balanophyllia malouinensis, and Flabellum curvatum, collected from the Drake Passage, and Madrepora oculata, collected from the North Atlantic. All modern individuals were either collected alive or uranium-series dated to be < 500 years old for comparison with local surface sediments and seawater profiles. Modern coral Nd isotopic compositions generally agree with ambient seawater values, which in turn are consistent with previously published seawater analyses, supporting small vertical and lateral Nd isotope gradients in modern Drake Passage waters. Two Balanophyllia malouinensis specimens collected live however deviate by up to 0.6 epsilon units from ambient seawater. We therefore recommend that this species should be treated with caution for the reconstruction of past seawater Nd isotopic compositions.
Seventy fossil Drake Passage CWCs were furthermore analysed for their Nd concentrations, revealing a large range from 7.3 to 964.5 ng/g. Samples of the species D. dianthus and Caryophyllia spp. show minor covariation of Nd with 232Th content, utilised to monitor contaminant phases in cleaned coral aragonite. Strong covariations between Nd and Th concentrations are however observed in the species B. malouinensis and G. antarctica. In order to better constrain the source and nature of Nd in the cleaned aragonitic skeletons, a subset of sixteen corals was investigated for its rare earth element (REE) content, as well as major and trace element geochemistry. Our new data provide supporting evidence that the applied cleaning protocol efficiently removes contaminant lithogenic and ferromanganese oxyhydroxide phases. Mass balance calculations and seawater-like REE patterns rule out lithogenic and ferromanganese oxyhydroxide phases as a major contributor to elevated Nd concentrations in coral aragonite. Based on mass balance considerations, geochemical evidence, and previously published independent work by solid-state nuclear magnetic resonance (NMR) spectroscopy, we suggest authigenic phosphate phases as a significant carrier of skeletal Nd. Such a carrier phase could explain sporadic appearance of high Nd concentrations in corals and would be coupled with seawater-derived Nd isotopic compositions, lending further confidence to the application of Nd isotopes as a water mass proxy in CWCs.
Close

Details

Original languageEnglish
Pages (from-to)146-168
Number of pages23
JournalChemical Geology
Volume453
Early online date27 Jan 2017
DOIs
Publication statusPublished - 20 Mar 2017

    Research areas

  • Neodymium isotopes, Rare earth elements, Cold-water corals, Seawater, Sediments, Drake Passage

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales

    Rae, J. W. B., Burke, A., Robinson, L. F., Adkins, J. F., Chen, T., Cole, C., Greenop, R., Li, T., Littley, E., Nita, D. C., Stewart, J. A. & Taylor, B., 24 Oct 2018, In : Nature. 562, p. 569-573 16 p.

    Research output: Contribution to journalLetter

  2. Sulfur isotopes in rivers: insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle

    Burke, A., Present, T. M., Paris, G., Rae, E. C. M., Sandilands, B. H., Gaillardet, J., Peucker-Ehrenbrink, B., Fischer, W. W., McClelland, J. W., Spencer, R. G. M., Voss, B. M. & Adkins, J. F., 15 Aug 2018, In : Earth and Planetary Science Letters. 496, p. 168-177 10 p.

    Research output: Contribution to journalArticle

  3. Acceleration of northern ice sheet melt induces AMOC slowdown and northern cooling in simulations of the early last deglaciation

    Ivanovic, R., Gregoire, L., Burke, A., Wickert, A. D., Valdes, P. J., Ng, H. C., Robinson, L. F., McManus, J. F., Mitrovica, J. X., Lee, L. & Dentith, J. E., 27 Jul 2018, In : Paleoceanography and Paleoclimatology. Early View, 18 p.

    Research output: Contribution to journalArticle

  4. Distribution and ecology of planktic foraminifera in the North Pacific: implications for paleo-reconstructions

    Taylor, B. J., Rae, J. W. B., Gray, W. R., Darling, K., Burke, A., Gersonde, R., Abelmann, A., Maier, E., Esper, O. & Ziveri, P., 1 Jul 2018, In : Quaternary Science Reviews. 191, p. 256-274 19 p.

    Research output: Contribution to journalArticle

  5. Climatic effect of Antarctic meltwater overwhelmed by concurrent Northern hemispheric melt

    Ivanovic, R. F., Gregoire, L. J., Wickert, A. D. & Burke, A., 16 Jun 2018, In : Geophysical Research Letters. 45, 11, p. 5681-5689 9 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals

    Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V. & Kirsimäe, K., 3 Mar 2019, In : Chemical Geology. 512, p. 43-57 15 p.

    Research output: Contribution to journalArticle

  2. Bias in carbon concentration and δ13C measurements of organic matter due to cleaning treatments with organic solvents

    Muller, É., Thomazo, C., Stüeken, E. E., Hallmann, C., Leider, A., Chaduteau, C., Buick, R., Baton, F., Philippot, P. & Ader, M., 20 Aug 2018, In : Chemical Geology. 493, p. 405-412 8 p.

    Research output: Contribution to journalArticle

  3. Carbonated mantle domains at the base of the Earth's transition zone

    Sun, W., Hawkesworth, C. J., Yao, C., Zhang, C., Huang, R., Liu, X., Sun, X., Ireland, T., Song, M., Ling, M., Ding, X., Zhang, Z., Fan, W. & Wu, Z., 5 Feb 2018, In : Chemical Geology. 478, p. 69-75

    Research output: Contribution to journalArticle

  4. Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia

    Paiste, K., Lepland, A., Zerkle, A. L., Kirsimäe, K., Izon, G. J., Patel, N., McLean, F., Kreitsmann, T., Mänd, K., Bui, T., Romashkin, A., Rychanchik, D. & Prave, A. R., 5 Nov 2018, In : Chemical Geology. 499, p. 151-164 14 p.

    Research output: Contribution to journalArticle

  5. Quantification of paleo-aquifer changes using clumped isotopes in subaqueous carbonate speleothems

    Gázquez, F., Columbu, A., De Waele, J., Breitenbach, S. F. M., Huang, C. R., Shen, C. C., Lu, Y., Calaforra, J. M., Mleneck-Vautravers, M. J. & Hodell, D. A., 20 Aug 2018, In : Chemical Geology. 493, p. 246-257 12 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Highlights of the Goldschmidt Meeting, Heidelberg, 31 March–4 April 1996 in honor of A.W. Hofmann

    Hawkesworth, C. (ed.) & Arndt, N. (ed.), 1997, Chemical Geology, 139 360 p.

    Research output: Contribution to specialist publicationSpecial issue

ID: 249016164