Skip to content

Research at St Andrews

Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U–Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone

Research output: Contribution to journalArticle

Author(s)

Yongfeng Cai, Yuejun Wang, Peter A. Cawood, Yuzhi Zhang, Aimei Zhang

School/Research organisations

Abstract

Abstract Neoproterozoic felsic igneous rocks associated with mafic-ultramafic bodies along the margins of the Yangtze Block, South China, can be used to constrain the continental crustal growth and secular evolution of the region. LA-ICPMS zircon U-Pb dating of the Adebo quartz diorite pluton in the Ailaoshan tectonic zone on the southern margin of the Yangtze Block gives the Neoproterozoic age of 800 ± 7 Ma and ɛHf(t) values in the range of -1.03 to +3.75 with two-stage model age of 1.3-1.6 Ga. The pluton is characterized by relatively low SiO2 (60.97-64.41 wt. %) and total alkalis (K2O + Na2O, 7.35-9.14 wt. %) and high Al2O3 content (16.98-18.21 wt. %) with mg-number of 36-39. REE-normalized patterns show enrichment in LREE with (La/Yb)cn of 11.36 to 19.77 and Europium negative anomalies with Eu/Eu* = 0.61- 0.74. The samples are characterized by negative Nb-Ta ((Nb/La)n = 0.18-0.35) and P, Ti, Sr anomalies and high Y concentrations (33.79-41.04 ppm) and low Sr/Y ratios (5.65-10.16). Their isotopic composition are similar to those of the Neoproterozoic mafic igneous rocks in the Ailaoshan zone and the southwestern Yangtze Block, indicating that the quartz diorite was produced by partial melting of mafic lower crust. The diorite also shows the similar geochemical characteristics with adakitic rocks from thickened lower crust or amphibolite and eclogite experimental melts. In combination with their arc-related geochemical signatures and synchronous developed adakitic rocks in the region, the Adebo quartz diorite pluton might be produced in a subduction-related tectonic setting during Neoproterozoic crustal growth along the margins of Yangtze Block.

Close

Details

Original languageEnglish
Pages (from-to)137-149
JournalPrecambrian Research
Volume266
Early online date22 May 2015
DOIs
Publication statusPublished - Sep 2015

    Research areas

  • Quartz diorite, Neoproterozoic, Crustal growth, Petrogenesis, Ailaoshan zone, Yangtze Block

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: constraints on the early crustal evolution of the Yangtze Block

    Zhao, T., Cawood, P. A., Wang, K., Zi, J-W., Feng, Q., Nguyen, Q. M. & Tran, D. M., 24 Jul 2019, In : Precambrian Research. 332, 105395.

    Research output: Contribution to journalArticle

  2. Jiangnan Orogen, South China: a ~970–820 Ma Rodinia margin accretionary belt

    Yao, J., Cawood, P. A., Shu, L. & Zhao, G., 3 Jun 2019, In : Earth Science Reviews. In press

    Research output: Contribution to journalArticle

Related by journal

  1. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

    Baker, T. R., Prave, A. R. & Spencer, C. J., Aug 2019, In : Precambrian Research. 329, p. 224-231

    Research output: Contribution to journalArticle

  2. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: constraints on the early crustal evolution of the Yangtze Block

    Zhao, T., Cawood, P. A., Wang, K., Zi, J-W., Feng, Q., Nguyen, Q. M. & Tran, D. M., 24 Jul 2019, In : Precambrian Research. 332, 105395.

    Research output: Contribution to journalArticle

  3. A refined late-Cryogenian – Ediacaran Earth history of South China: phosphorous-rich marbles of the Dabie and Sulu orogens

    Prave, A. R., Meng, F., Lepland, A., Kirsmäe, K., Kreitsmann, T. & Jiang, C. Z., Feb 2018, In : Precambrian Research. 305, p. 166-176

    Research output: Contribution to journalArticle

  4. Environmental control on microbial diversification and methane production in the Mesoarchean

    Stueeken, E. E. & Buick, R., Jan 2018, In : Precambrian Research. 304, p. 64-72

    Research output: Contribution to journalArticle

ID: 190277746