Skip to content

Research at St Andrews

Neutron-poor nickel isotope anomalies in meteorites

Research output: Contribution to journalArticlepeer-review

Standard

Neutron-poor nickel isotope anomalies in meteorites. / Steele, Robert C. J.; Coath, Christopher D.; Regelous, Marcel; Russell, Sara; Elliott, Tim.

In: Astrophysical Journal, Vol. 758, No. 1, 59, 26.09.2012.

Research output: Contribution to journalArticlepeer-review

Harvard

Steele, RCJ, Coath, CD, Regelous, M, Russell, S & Elliott, T 2012, 'Neutron-poor nickel isotope anomalies in meteorites', Astrophysical Journal, vol. 758, no. 1, 59. https://doi.org/10.1088/0004-637X/758/1/59

APA

Steele, R. C. J., Coath, C. D., Regelous, M., Russell, S., & Elliott, T. (2012). Neutron-poor nickel isotope anomalies in meteorites. Astrophysical Journal, 758(1), [59]. https://doi.org/10.1088/0004-637X/758/1/59

Vancouver

Steele RCJ, Coath CD, Regelous M, Russell S, Elliott T. Neutron-poor nickel isotope anomalies in meteorites. Astrophysical Journal. 2012 Sep 26;758(1). 59. https://doi.org/10.1088/0004-637X/758/1/59

Author

Steele, Robert C. J. ; Coath, Christopher D. ; Regelous, Marcel ; Russell, Sara ; Elliott, Tim. / Neutron-poor nickel isotope anomalies in meteorites. In: Astrophysical Journal. 2012 ; Vol. 758, No. 1.

Bibtex - Download

@article{ebf39722502d4dcd815590eded4eaddd,
title = "Neutron-poor nickel isotope anomalies in meteorites",
abstract = "We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as ε60Ni58/61 , ε62Ni58/61 , and ε64Ni58/61 , or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the 58Ni/61Ni internally normalized 60Ni/61Ni, 62Ni/61Ni, and 64Ni/61Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in ε60Ni58/61 , ε62Ni58/61, and ε64Ni58/61 relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceous chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between ε62Ni58/61 and ε64Ni58/61, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 ± 0.166 which is within the error of that expected for an anomaly solely on 58Ni. We also determined to high precision (~10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of ε62Ni58/61 and ε64Ni58/61. These analyses show that {"}absolute{"} ratios of 58Ni/61Ni vary between these two samples whereas those of 62Ni/61Ni and 64Ni/61Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor 58Ni, and not correlated anomalies in the neutron-rich isotopes, 62Ni and 64Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other transition elements which invoked variable contributions of a neutron-rich component. We have examined different nucleosynthetic environments to determine the possible source of the anomalous material responsible for the isotopic variations observed in Ni and other transition elements within bulk samples. We find that the Ni isotopic variability of the solar system cannot be explained by mixing with a component of bulk stellar ejecta from either SN II, Wolf-Rayet or, an asymptotic giant branch source and is unlikely to result from bulk mixing of material from an SN Ia. However, variable admixture of material from the Si/S zone of an SN II can create all the characteristics of Ni isotope variations in solar system materials. Moreover, these characteristics can also be provided by an SN II with a range of masses from 15 to 40 M☉ , showing that input from SN II is a robust source for Ni isotope variations in the solar system. Correlations of Ni isotope anomalies with O, Cr, and Ti isotope ratios and Pb/Yb in bulk meteorites suggest that the heterogeneous distribution of isotopic anomalies in the early solar system likely resulted from nebular sorting of chemically or physically different materials bearing different amounts of isotopes synthesized proximally to the collapse of the protosolar nebula.",
keywords = "Astrochemistry, Meteorites, meteors, meteoroids, Methods: analytical, Nuclear reactions, Nucleosynthesis, Abundances, Protoplanetary disks",
author = "Steele, {Robert C. J.} and Coath, {Christopher D.} and Marcel Regelous and Sara Russell and Tim Elliott",
year = "2012",
month = sep,
day = "26",
doi = "10.1088/0004-637X/758/1/59",
language = "English",
volume = "758",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "American Astronomical Society",
number = "1",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Neutron-poor nickel isotope anomalies in meteorites

AU - Steele, Robert C. J.

AU - Coath, Christopher D.

AU - Regelous, Marcel

AU - Russell, Sara

AU - Elliott, Tim

PY - 2012/9/26

Y1 - 2012/9/26

N2 - We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as ε60Ni58/61 , ε62Ni58/61 , and ε64Ni58/61 , or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the 58Ni/61Ni internally normalized 60Ni/61Ni, 62Ni/61Ni, and 64Ni/61Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in ε60Ni58/61 , ε62Ni58/61, and ε64Ni58/61 relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceous chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between ε62Ni58/61 and ε64Ni58/61, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 ± 0.166 which is within the error of that expected for an anomaly solely on 58Ni. We also determined to high precision (~10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of ε62Ni58/61 and ε64Ni58/61. These analyses show that "absolute" ratios of 58Ni/61Ni vary between these two samples whereas those of 62Ni/61Ni and 64Ni/61Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor 58Ni, and not correlated anomalies in the neutron-rich isotopes, 62Ni and 64Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other transition elements which invoked variable contributions of a neutron-rich component. We have examined different nucleosynthetic environments to determine the possible source of the anomalous material responsible for the isotopic variations observed in Ni and other transition elements within bulk samples. We find that the Ni isotopic variability of the solar system cannot be explained by mixing with a component of bulk stellar ejecta from either SN II, Wolf-Rayet or, an asymptotic giant branch source and is unlikely to result from bulk mixing of material from an SN Ia. However, variable admixture of material from the Si/S zone of an SN II can create all the characteristics of Ni isotope variations in solar system materials. Moreover, these characteristics can also be provided by an SN II with a range of masses from 15 to 40 M☉ , showing that input from SN II is a robust source for Ni isotope variations in the solar system. Correlations of Ni isotope anomalies with O, Cr, and Ti isotope ratios and Pb/Yb in bulk meteorites suggest that the heterogeneous distribution of isotopic anomalies in the early solar system likely resulted from nebular sorting of chemically or physically different materials bearing different amounts of isotopes synthesized proximally to the collapse of the protosolar nebula.

AB - We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as ε60Ni58/61 , ε62Ni58/61 , and ε64Ni58/61 , or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the 58Ni/61Ni internally normalized 60Ni/61Ni, 62Ni/61Ni, and 64Ni/61Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in ε60Ni58/61 , ε62Ni58/61, and ε64Ni58/61 relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceous chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between ε62Ni58/61 and ε64Ni58/61, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 ± 0.166 which is within the error of that expected for an anomaly solely on 58Ni. We also determined to high precision (~10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of ε62Ni58/61 and ε64Ni58/61. These analyses show that "absolute" ratios of 58Ni/61Ni vary between these two samples whereas those of 62Ni/61Ni and 64Ni/61Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor 58Ni, and not correlated anomalies in the neutron-rich isotopes, 62Ni and 64Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other transition elements which invoked variable contributions of a neutron-rich component. We have examined different nucleosynthetic environments to determine the possible source of the anomalous material responsible for the isotopic variations observed in Ni and other transition elements within bulk samples. We find that the Ni isotopic variability of the solar system cannot be explained by mixing with a component of bulk stellar ejecta from either SN II, Wolf-Rayet or, an asymptotic giant branch source and is unlikely to result from bulk mixing of material from an SN Ia. However, variable admixture of material from the Si/S zone of an SN II can create all the characteristics of Ni isotope variations in solar system materials. Moreover, these characteristics can also be provided by an SN II with a range of masses from 15 to 40 M☉ , showing that input from SN II is a robust source for Ni isotope variations in the solar system. Correlations of Ni isotope anomalies with O, Cr, and Ti isotope ratios and Pb/Yb in bulk meteorites suggest that the heterogeneous distribution of isotopic anomalies in the early solar system likely resulted from nebular sorting of chemically or physically different materials bearing different amounts of isotopes synthesized proximally to the collapse of the protosolar nebula.

KW - Astrochemistry

KW - Meteorites, meteors, meteoroids

KW - Methods: analytical

KW - Nuclear reactions

KW - Nucleosynthesis

KW - Abundances

KW - Protoplanetary disks

U2 - 10.1088/0004-637X/758/1/59

DO - 10.1088/0004-637X/758/1/59

M3 - Article

VL - 758

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 1

M1 - 59

ER -

Related by author

  1. Elemental abundances of major elements in the solar wind as measured in Genesis targets and implications on solar wind fractionation

    Heber, V., McKeegan, K., Steele, R. C. J., Jurewicz, A., Rieck, K., Guan, Y., Wieler, R. & Burnett, D. S., 20 Jan 2021, In: Astrophysical Journal. 907, 1, 15.

    Research output: Contribution to journalArticlepeer-review

  2. Nucleosynthetic heterogeneities in meteorites

    Steele, R. C. J., 17 Sep 2020, Reference Module in Earth Systems and Environmental Sciences. Elsevier Inc.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  3. The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field

    Bischoff, A., Barrat, J-A., Bauer, K., Burkhardt, C., Busemann, H., Ebert, S., Gonsior, M., Hakenmüller, J., Haloda, J., Harries, D., Heinlein, D., Hiesinger, H., Hochleitner, R., Hoffmann, V., Kaliwoda, M., Laubenstein, M., Maden, C., Meier, M. M. M., Morlok, A., Pack, A. & 6 others, Ruf, A., Schmitt-Kopplin, P., Schönbächler, M., Steele, R. C. J., Spurný, P. & Wimmer, K., 2 Aug 2017, In: Meteoritics & Planetary Science. 52, 8, p. 1683-1703

    Research output: Contribution to journalArticlepeer-review

  4. The isotope geochemistry of Ni

    Elliott, T. & Steele, R. C. J., 1 Jan 2017, In: Reviews in Mineralogy and Geochemistry. 82, 1, p. 511-542 31 p.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Astrophysical Journal (Journal)

    Carolin Villforth (Reviewer)

    2011 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  2. Astrophysical Journal (Journal)

    Christiane Helling (Reviewer)

    1 Jan 200631 Dec 2017

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  3. Astrophysical Journal (Journal)

    Duncan Hendry Mackay (Editor)

    1997 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  4. Astrophysical Journal (Journal)

    Alan William Hood (Editor)

    1980 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Amplitude modulation of short-timescale hot spot variability

    Biddle, L. I., Llama, J., Cameron, A., Prato, L., Jardine, M. & Johns-Krull, C. M., 14 Jan 2021, In: Astrophysical Journal. 906, 2, 7 p., 113.

    Research output: Contribution to journalArticlepeer-review

  2. Elemental abundances of major elements in the solar wind as measured in Genesis targets and implications on solar wind fractionation

    Heber, V., McKeegan, K., Steele, R. C. J., Jurewicz, A., Rieck, K., Guan, Y., Wieler, R. & Burnett, D. S., 20 Jan 2021, In: Astrophysical Journal. 907, 1, 15.

    Research output: Contribution to journalArticlepeer-review

  3. Space Telescope and Optical Reverberation Mapping Project. IX. Velocity-delay maps for broad emission lines in NGC 5548

    Horne, K., De Rosa, G., Peterson, B. M., Barth, A. J., Ely, J., Fausnaugh, M. M., Kriss, G. A., Pei, L., Bentz, M. C., Cackett, E. M., Edelson, R., Eracleous, M., Goad, M. R., Grier, C. J., Kaastra, J., Kochanek, C. S., Krongold, Y., Mathur, S., Netzer, H., Proga, D. & 135 others, Tejos, N., Vestergaard, M., Villforth, C., Adams, S. M., Anderson, M. D., Arévalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Dalla Bontà, E., Deason, A. J., Dehghanian, M., De Lorenzo-Cáceres, A., Denney, K. D., Dietrich, M., Done, C., Efimova, N. V., Evans, P. A., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W-S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Korista, K. T., Lau, M. W., Lee, J. C., Leonard, D. C., Li, M., Lira, P., Lochhaas, C., Ma, Z., MacInnis, F., Malkan, M. A., Manne-Nicholas, E. R., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Müller–Sánchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Pancoast, A., Papadakis, I., Parks, J. R., Penny, M. T., Pizzella, A., Pogge, R. W., Poleski, R., Pott, J-U., Rafter, S. E., Rix, H-W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnülle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H-I., Tayar, J., Treu, T., Turner, C. S., Uttley, P., Van Saders, J., Vican, L., Villanueva, S., Weiss, Y., Woo, J-H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W. & Zu, Y., 1 Feb 2021, In: Astrophysical Journal. 907, 2, 19 p., 76.

    Research output: Contribution to journalArticlepeer-review

  4. The sloan digital sky survey reverberation mapping project: The MBH-host relations at 0.2 ≲ z ≲ 0.6 from reverberation mapping and hubble space telescope imaging

    Li, J. I. H., Shen, Y., Ho, L. C., Brandt, W. N., Bontà, E. D., Fonseca Alvarez, G., Grier, C. J., Hernandez Santisteban, J. V., Homayouni, Y., Horne, K., Peterson, B. M., Schneider, D. P. & Trump, J. R., 13 Jan 2021, In: Astrophysical Journal. 906, 2, 13 p., 103.

    Research output: Contribution to journalArticlepeer-review

  5. Spitzer microlensing parallax reveals two isolated stars in the Galactic bulge

    Zang, W., Shvartzvald, Y., Wang, T., Udalski, A., Lee, C-U., Sumi, T., Skottfelt, J., Li, S-S., Mao, S., Zhu, W., Yee, J. C., Calchi Novati, S., Beichman, C. A., Bryden, G., Carey, S., Gaudi, B. S., Henderson, C. B., Mróz, P., Skowron, J., Poleski, R. & 74 others, Szymański, M. K., Soszyński, I., Pietrukowicz, P., Kozłowski, S., Ulaczyk, K., Rybicki, K. A., Iwanek, P., Bachelet, E., Christie, G., Green, J., Hennerley, S., Maoz, D., Natusch, T., Pogge, R. W., Street, R. A., Tsapras, Y., Albrow, M. D., Chung, S-J., Gould, A., Han, C., Hwang, K-H., Jung, Y. K., Ryu, Y-H., Shin, I-G., Cha, S-M., Kim, D-J., Kim, H-W., Kim, S-L., Lee, D-J., Lee, Y., Park, B-G., Pogge, R. W., Bond, I. A., Abe, F., Barry, R., Bennett, D. P., Bhattacharya, A., Donachie, M., Fukui, A., Hirao, Y., Itow, Y., Kondo, I., Koshimoto, N., Li, M. C. A., Matsubara, Y., Muraki, Y., Miyazaki, S., Nagakane, M., Ranc, C., Rattenbury, N. J., Suematsu, H., Sullivan, D. J., Suzuki, D., Tristram, P. J., Yonehara, A., Dominik, M., Hundertmark, M., Jørgensen, U. G., Rahvar, S., Sajadian, S., Snodgrass, C., Bozza, V., Burgdorf, M. J., Evans, D. F., Figuera Jaimes, R., Fujii, Y. I., Mancini, L., Longa-Peña, P., Helling, C., Peixinho, N., Rabus, M., Southworth, J., Unda-Sanzana, E. & von Essen, C., 1 Mar 2020, In: Astrophysical Journal. 891, 1, 11 p., 3.

    Research output: Contribution to journalArticlepeer-review

ID: 255735788

Top