Skip to content

Research at St Andrews

Non-linear force-free field modelling of solar coronal jets in theoretical configurations

Research output: Contribution to journalArticle


Karen Alison Meyer, Antonia S. Savcheva, Duncan Hendry Mackay, Ed E. DeLuca

School/Research organisations


Coronal jets occur frequently on the Sun, and may contribute significantly to the solar wind. With the suite of instruments available now, we can observe these phenomena in greater detail than ever before. Modeling and simulations can assist further in understanding the dynamic processes involved, but previous studies tend to consider only one mechanism (e.g. emergence or rotation) for the origin of the jet. In this study we model a series of idealised archetypal jet configurations and follow the evolution of the coronal magnetic field. This is a step towards understanding these idealised situations before considering their observational counterparts. Several simple situations are set up for the evolution of the photospheric magnetic field: a single parasitic polarity rotating or moving in a circular path;as well as opposite polarity pairs involved in flyby (shearing), cancellation or emergence; all in the presence of a uniform, open background magnetic field. The coronal magnetic field is evolved in time using a magnetofrictional relaxation method. While magnetofriction cannot accurately reproduce the dynamics of an eruptive phase, the structure of the coronal magnetic field, as well as the buildup of electric currents and free magnetic energy are instructive. Certain configurations and motions produce a flux rope and allow the significant build up of free energy, reminiscent of the progenitors of so-called blowout jets, whereas other, simpler configurations are more comparable to the standard jetmodel. The next stage is a comparison with observed coronal jet structures and their corresponding photospheric evolution.


Original languageEnglish
JournalAstrophysical Journal
Publication statusAccepted/In press - 1 May 2019

    Research areas

  • Sun: solar jets, Sun: magnetic fields

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Observing the simulations: applying ZDI to 3D non-potential magnetic field simulations

    Lehmann, L. T., Hussain, G. A. J., Jardine, M. M., Mackay, D. H. & Vidotto, A. A., 11 Mar 2019, In : Monthly Notices of the Royal Astronomical Society. 483, 4, p. 5246–5266

    Research output: Contribution to journalArticle

  2. Eruptions from quiet Sun coronal bright points: II. Non-potential modelling

    Galsgaard, K., Madjarska, M., Mackay, D. H. & Mou, C., Mar 2019, In : Astronomy & Astrophysics. 623, 16 p., A78.

    Research output: Contribution to journalArticle

  3. Magnetic helicity condensation and the solar cycle

    Mackay, D. H., DeVore, C. R., Antiochos, S. & Yeates, A. R., Dec 2018, In : Astrophysical Journal. 869, 1, 21 p., 62.

    Research output: Contribution to journalArticle

  4. The role of flux cancellation in eruptions from bipolar ARs

    Yardley, S. L., Green, L. M., Driel-Gesztelyi, L. V., Williams, D. R. & Mackay, D. H., 10 Oct 2018, In : Astrophysical Journal. 866, 1, 11 p., 8.

    Research output: Contribution to journalArticle

Related by journal

  1. Astrophysical Journal (Journal)

    Carolin Villforth (Reviewer)
    2011 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  2. Astrophysical Journal (Journal)

    Christiane Helling (Reviewer)
    1 Jan 200631 Dec 2017

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  3. Astrophysical Journal (Journal)

    Duncan Hendry Mackay (Editor)
    1997 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  4. Astrophysical Journal (Journal)

    Alan William Hood (Editor)
    1980 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. A cancellation nanoflare model for solar chromospheric and coronal heating. II. 2D theory and simulations

    Syntelis, P., Priest, E. R. & Chitta, L. P., 7 Feb 2019, In : Astrophysical Journal. 872, 1, 15 p., 32.

    Research output: Contribution to journalArticle

  2. Estimating magnetic filling factors from Zeeman–Doppler magnetograms

    See, V., Matt, S. P., Folsom, C. P., Saikia, S. B., Donati, J-F., Fares, R., Finley, A. J., Hébrard, É. M., Jardine, M. M., Jeffers, S. V., Lehmann, L. T., Marsden, S. C., Mengel, M. W., Morin, J., Petit, P., Vidotto, A. A. & Waite, I. A., 9 May 2019, In : Astrophysical Journal. 876, 2, 118.

    Research output: Contribution to journalArticle

  3. First determination of 2D speed distribution within the bodies of coronal mass ejections with cross-correlation analysis

    Ying, B., Bemporad, A., Giordano, S., Pagano, P., Feng, L., Lu, L., Li, H. & Gan, W., 23 Jul 2019, In : Astrophysical Journal. 880, 1, 14 p., 41.

    Research output: Contribution to journalArticle

  4. HARPS-N solar RVs are dominated by large, bright magnetic regions

    Milbourne, T. W., Haywood, R. D., Phillips, D. F., Saar, S. H., Cegla, H. M., Cameron, A. C., Costes, J., Dumusque, X., Langellier, N., Latham, D. W., Maldonado, J., Malavolta, L., Mortier, A., Palumbo III, M. L., Thompson, S., Watson, C. A., Bouchy, F., Buchschacher, N., Cecconi, M., Charbonneau, D. & 20 othersCosentino, R., Ghedina, A., Glenday, A. G., Gonzalez, M., Li, C-H., Lodi, M., López-Morales, M., Lovis, C., Mayor, M., Micela, G., Molinari, E., Pepe, F., Piotto, G., Rice, K., Sasselov, D., Ségransan, D., Sozzetti, A., Szentgyorgyi, A., Udry, S. & Walsworth, R. L., Mar 2019, In : Astrophysical Journal. 874, 1, 12 p., 107.

    Research output: Contribution to journalArticle

ID: 258834139