Skip to content

Research at St Andrews

Northern elephant seals adjust gliding and stroking patterns with changes in buoyancy: validation of at-sea metrics of body density

Research output: Contribution to journalArticle

DOI

Abstract

Many diving animals undergo substantial changes in their body density that are the result of changes in lipid content over their annual fasting cycle. Because the size of the lipid stores reflects an integration of foraging effort (energy expenditure) and foraging success (energy assimilation), measuring body density is a good way to track net resource acquisition of free-ranging animals while at sea. Here, we experimentally altered the body density and mass of three free-ranging elephant seals by remotely detaching weights and floats while monitoring their swimming speed, depth and three-axis acceleration with a high-resolution data logger. Cross-validation of three methods for estimating body density from hydrodynamic gliding performance of freely diving animals showed strong positive correlation with body density estimates obtained from isotope dilution body composition analysis over density ranges of 1015 to 1060 kg m(-3). All three hydrodynamic models were within 1% of, but slightly greater than, body density measurements determined by isotope dilution, and therefore have the potential to track changes in body condition of a wide range of freely diving animals. Gliding during ascent and descent clearly increased and stroke rate decreased when buoyancy manipulations aided the direction of vertical transit, but ascent and descent speed were largely unchanged. The seals adjusted stroking intensity to maintain swim speed within a narrow range, despite changes in buoyancy. During active swimming, all three seals increased the amplitude of lateral body accelerations and two of the seals altered stroke frequency in response to the need to produce thrust required to overcome combined drag and buoyancy forces.

Close

Details

Original languageEnglish
Pages (from-to)2973-2987
Number of pages15
JournalJournal of Experimental Biology
Volume214
Issue number17
DOIs
Publication statusPublished - Sep 2011

    Research areas

  • acceleration, body condition, body density, buoyancy, drag, elephant seal, HYDROGEN-ISOTOPE-DILUTION, MIROUNGA-LEONINA, ANIMAL MOVEMENT, SWIM SPEED, GREY SEALS, FUR SEALS, ARCTOCEPHALUS-GAZELLA, BRUNNICHS GUILLEMOTS, NATURAL CONDITIONS, FORAGING SUCCESS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers

    Miller, P., Biuw, M., Watanabe, Y. Y., Thompson, D. & Fedak, M., Oct 2012, In : Journal of Experimental Biology. 215, 20, p. 3622-3630 9 p.

    Research output: Contribution to journalArticle

  2. Northern bottlenose whales in a pristine environment respond strongly to close and distant navy sonar signals

    Wensveen, P. J., Isojunno, S., Hansen, R. R., Von Benda-beckmann, A. M., Kleivane, L., Van Ijsselmuide, S., Lam, F. A., Kvadsheim, P. H., Deruiter, S. L., Curé, C., Narazaki, T., Tyack, P. L. & Miller, P. J. O., 20 Mar 2019, In : Proceedings of the Royal Society B: Biological Sciences. 286, 1899, 10 p., 20182592.

    Research output: Contribution to journalArticle

  3. Predicting acoustic dose associated with marine mammal behavioural responses to sound as detected with fixed acoustic recorders and satellite tags

    von Benda-Beckmann, A. M., Wensveen, P. J., Prior, M., Ainslie, M. A., Hansen, R. R., Isojunno, S., Lam, F. P. A., Kvadsheim, P. H. & Miller, P. J. O., 20 Mar 2019, In : Journal of the Acoustical Society of America. 145, 3, p. 1401-1416 16 p.

    Research output: Contribution to journalArticle

  4. Future directions in research on beaked whales

    Hooker, S. K., De Soto, N. A., Baird, R. W., Carroll, E. L., Claridge, D., Feyrer, L., Miller, P. J. O., Onoufriou, A., Schorr, G., Siegal, E. & Whitehead, H., 25 Jan 2019, In : Frontiers in Marine Science. 5, 16 p., 514.

    Research output: Contribution to journalArticle

  5. Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic

    Lone, K., Kovacs, K. M., Lydersen, C., Fedak, M., Andersen, M., Lovell, P. & Aars, J., 1 Dec 2018, In : Scientific Reports. 8, 12 p., 9677.

    Research output: Contribution to journalArticle

Related by journal

  1. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar

    Southall, B., DeRuiter, S., Friedlaender, A., Stimpert, A., Goldbogen, J., Hazen, E., Casey, C., Fregosi, S., Cade, D., Allen, A., Harris, C. M., Schorr, G., Moretti, D., Guan, S. & Calambokidis, J., Mar 2019, In : Journal of Experimental Biology. 222, 15 p., jeb190637.

    Research output: Contribution to journalArticle

  2. Dolphin echolocation behaviour during active long-range target approaches

    Ladegaard, M., Mulsow, J., Houser, D. S., Jensen, F. H., Johnson, M., Madsen, P. T. & Finneran, J. J., 25 Jan 2019, In : Journal of Experimental Biology. 222, 12 p., jeb189217.

    Research output: Contribution to journalArticle

  3. No experimental evidence of stress-induced hyperthermia in zebrafish (Danio rerio)

    Jones, N. A. R., Mendo, T., Broell, F. & Webster, M. M., 24 Jan 2019, In : Journal of Experimental Biology. 222, 2, 8 p., jeb.192971.

    Research output: Contribution to journalArticle

  4. Dive heart rate in harbour porpoises is influenced by exercise and expectations

    McDonald, B., Johnson, M. & Madsen, P., 9 Jan 2018, In : Journal of Experimental Biology. 221, 1, jeb168740.

    Research output: Contribution to journalArticle

ID: 15520975