Skip to content

Research at St Andrews

Novel tin oxide spinel-based anodes for Li-ion batteries

Research output: Contribution to journalArticle

Author(s)

School/Research organisations

Abstract

In this study, a series of inverse spinel M2SnO4 (M = Mg, Mn, Co) oxides were produced and tested to probe the effect the oxide matrix has on the electrochemical performance of tin oxides. Generally, these new oxides show similar behaviour to SnO2 with the formation of a more complicated mixed metal oxide matrix affecting the potentials of tin reduction and lithium insertion. A reasonable correlation is observed between the potential of the initial reduction of the spinel oxide to metallic tin and the enthalpy of formation of the metal oxide (MO). Amongst the spinels, Mn2SnO4 exhibits the best reversibility and Mg2SnO4 the worst. (C) 2001 Elsevier Science B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)223-225
Number of pages3
JournalJournal of Power Sources
Volume97-98
Publication statusPublished - Jul 2001

    Research areas

  • lithium-ion battery, lithium alloy anode, tin oxide, tin oxide spinels, transition metal oxide, LITHIUM

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. Synthesis and electrochemical characterization of La0.75Sr0.25Mn0.5Cr0.5‐xAlxO3, for IT- and HT- SOFCs

    Abdalla, A. M., Kamel, M., Hossain, S., Irvine, J. T. S. & Azad, A. K., 12 Sep 2019, In : International Journal of Applied Ceramic Technology. Early View

    Research output: Contribution to journalArticle

  4. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 11 Sep 2019, (Accepted/In press) In : ChemElectroChem. In press

    Research output: Contribution to journalArticle

  5. Photo-catalytic hydrogen production over Au/g-C3N4: effect of gold particle dispersion and morphology

    Caux, M., Menard, H., AlSalik, Y. M., Irvine, J. T. S. & Idriss, H., 7 Aug 2019, In : Physical Chemistry Chemical Physics. 21, 29, p. 15974-15987 14 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Xu, H., Chen, B., Zhang, H., Tan, P., Yang, G., Irvine, J. T. S. & Ni, M., 1 Apr 2018, In : Journal of Power Sources. 382, p. 135-143 9 p.

    Research output: Contribution to journalArticle

  2. Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders

    Kim, E. J., Yue, X., Irvine, J. T. S. & Armstrong, A. R., 1 Nov 2018, In : Journal of Power Sources. 403, p. 11-19 9 p.

    Research output: Contribution to journalArticle

  3. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Li, S., Jiang, C., Liu, J., Tao, H., Meng, X., Connor, P., Hui, J., Wang, S., Ma, J. & Irvine, J. T. S., 15 Apr 2018, In : Journal of Power Sources. 383, p. 10-16 7 p.

    Research output: Contribution to journalArticle

  4. Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes

    Lee, D., Myung, J., Tan, J., Hyun, S-H., Irvine, J. T. S., Kim, J. & Moon, J., 31 Mar 2017, In : Journal of Power Sources. 345, p. 30-40 11 p.

    Research output: Contribution to journalArticle

  5. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    Nielsen, J., Persson, Å. H., Sudireddy, B. R., Irvine, J. T. S. & Thydén, K., 31 Dec 2017, In : Journal of Power Sources. 372, p. 99-106 8 p.

    Research output: Contribution to journalArticle

ID: 197202