Skip to content

Research at St Andrews

On immunotherapies and cancer vaccination protocols: a mathematical modelling approach

Research output: Contribution to journalArticle

Author(s)

Badal Joshi, Xueying Wang, Sayanti Banerjee, Haiyan Tian, Anastasios Matzavinos, Mark A. J. Chaplain

School/Research organisations

Abstract

In this paper we develop a new mathematical model of immunotherapy and cancer vaccination, focusing on the role of antigen presentation and co-stimulatory signaling pathways in cancer immunology. We investigate the effect of different cancer vaccination protocols on the well-documented phenomena of cancer dormancy and recurrence, and we provide a possible explanation of why adoptive (i.e. passive) immunotherapy protocols can sometimes actually promote tumour growth instead of inhibiting it (a phenomenon called immunostimulation), as opposed to active vaccination protocols based on tumour-antigen pulsed dendritic cells. Significantly, the results of our computational simulations suggest that elevated numbers of professional antigen presenting cells correlate well with prolonged time periods of cancer dormancy. (C) 2009 Elsevier Ltd. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)820-827
Number of pages8
JournalJournal of Theoretical Biology
Volume259
Issue number4
DOIs
Publication statusPublished - 21 Aug 2009

    Research areas

  • Cancer vaccination, Immunotherapy, Cancer dormancy, Cancer recurrence, Cytotoxic T-lymphocytes, Immune cells competition, Bifurcation analysis, Tumor immunology, Dendritic cells, T cells, System, Growth, Dynamics, Perspectives, Vaccines

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Learning-induced switching costs in a parasitoid can maintain diversity of host aphid phenotypes although biocontrol is destabilized under abiotic stress

    Preedy, K., Chaplain, M. A. J., Leybourne, D., Marion, G. & Karley, A., 30 Mar 2020, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

  2. Bridging the gap between individual-based and continuum models of growing cell populations

    Chaplain, M. A. J., Lorenzi, T. & Macfarlane, F. R., Jan 2020, In : Journal of Mathematical Biology. 80, 1-2, p. 343-371

    Research output: Contribution to journalArticle

  3. Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy

    Stace, R. E. A., Stiehl, T., Chaplain, M. A. J., Marciniak-Czochra, A. & Lorenzi, T., 2020, In : Mathematical Modelling of Natural Phenomena. 15, 22 p., 14.

    Research output: Contribution to journalArticle

  4. Quantitative predictive modelling approaches to understanding rheumatoid arthritis: a brief review

    Macfarlane, F. R., Chaplain, M. A. J. & Eftimie, R., 27 Dec 2019, In : Cells. 9, 1, 26 p., 74.

    Research output: Contribution to journalReview article

Related by journal

  1. Journal of Theoretical Biology (Journal)

    Mark Andrew Joseph Chaplain (Editor)
    10 Apr 2017 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Consistency and identifiability of the polymorphism-aware phylogenetic models

    Borges, R. & Kosiol, C., 7 Feb 2020, In : Journal of Theoretical Biology. 486, p. 1-6 6 p., 110074.

    Research output: Contribution to journalArticle

  2. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In : Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  3. Spatial-stochastic modelling of synthetic gene regulatory networks

    Macnamara, C. K., Mitchell, E. & Chaplain, M. A. J., 10 Feb 2019, In : Journal of Theoretical Biology. In press

    Research output: Contribution to journalArticle

  4. Approximate Bayesian computation reveals the importance of repeated measurements for parameterising cell-based models of growing tissues

    Kursawe, J., Baker, R. E. & Fletcher, A. G., 14 Apr 2018, In : Journal of Theoretical Biology. 443, p. 66-81 16 p.

    Research output: Contribution to journalArticle

ID: 206436553

Top