Skip to content

Research at St Andrews

On immunotherapies and cancer vaccination protocols: a mathematical modelling approach

Research output: Contribution to journalArticlepeer-review

Author(s)

Badal Joshi, Xueying Wang, Sayanti Banerjee, Haiyan Tian, Anastasios Matzavinos, Mark A. J. Chaplain

School/Research organisations

Abstract

In this paper we develop a new mathematical model of immunotherapy and cancer vaccination, focusing on the role of antigen presentation and co-stimulatory signaling pathways in cancer immunology. We investigate the effect of different cancer vaccination protocols on the well-documented phenomena of cancer dormancy and recurrence, and we provide a possible explanation of why adoptive (i.e. passive) immunotherapy protocols can sometimes actually promote tumour growth instead of inhibiting it (a phenomenon called immunostimulation), as opposed to active vaccination protocols based on tumour-antigen pulsed dendritic cells. Significantly, the results of our computational simulations suggest that elevated numbers of professional antigen presenting cells correlate well with prolonged time periods of cancer dormancy. (C) 2009 Elsevier Ltd. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)820-827
Number of pages8
JournalJournal of Theoretical Biology
Volume259
Issue number4
DOIs
Publication statusPublished - 21 Aug 2009

    Research areas

  • Cancer vaccination, Immunotherapy, Cancer dormancy, Cancer recurrence, Cytotoxic T-lymphocytes, Immune cells competition, Bifurcation analysis, Tumor immunology, Dendritic cells, T cells, System, Growth, Dynamics, Perspectives, Vaccines

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Development of a coupled simulation toolkit for computational radiation biology based on Geant4 and CompuCell3D

    Liu, R., Higley, K., Swat, M., Chaplain, M. A. J., Powathil, G. & Glazier, J., 10 Feb 2021, In: Physics in Medicine and Biology. 66, 4, 20 p., 045026.

    Research output: Contribution to journalArticlepeer-review

  2. Modeling the emergence of phenotypic heterogeneity in vascularized tumors

    Villa, C., Chaplain, M. A. & Lorenzi, T., 2021, In: SIAM Journal on Applied Mathematics. 81, 2, p. 434-453 20 p.

    Research output: Contribution to journalArticlepeer-review

  3. A hybrid discrete-continuum approach to model Turing pattern formation

    Macfarlane, F. R., Chaplain, M. A. J. & Lorenzi, T., 29 Oct 2020, In: Mathematical Biosciences and Engineering. 17, 6, p. 7442-7479

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Journal of Theoretical Biology (Journal)

    Mark Andrew Joseph Chaplain (Editor)

    10 Apr 2017 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Consistency and identifiability of the polymorphism-aware phylogenetic models

    Borges, R. & Kosiol, C., 7 Feb 2020, In: Journal of Theoretical Biology. 486, p. 1-6 6 p., 110074.

    Research output: Contribution to journalArticlepeer-review

  2. Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle

    Pitcher, M. J., Bowness, R., Dobson, S. A., Eftimie, R. & Gillespie, S. H., 7 Dec 2020, In: Journal of Theoretical Biology. 506, 18 p., 110381.

    Research output: Contribution to journalArticlepeer-review

  3. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In: Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 206436553

Top