Skip to content

Research at St Andrews

On the energetics of a two-layer baroclinic flow

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

The formation, evolution and co-existence of jets and vortices in turbulent planetary atmospheres is examined using a two-layer quasi-geostrophic β -channel shallow-water model. The study in particular focuses on the vertical structure of jets. Following Panetta & Held (J. Atmos. Sci., vol. 45 (22), 1988, pp. 3354–3365), a vertical shear arising from latitudinal heating variations is imposed on the flow and maintained by thermal damping. Idealised convection between the upper and lower layers is implemented by adding cyclonic/anti-cyclonic pairs, called hetons, to the flow, though the qualitative flow evolution is evidently not sensitive to this or other small-scale stochastic forcing. A very wide range of simulations have been conducted. A characteristic simulation which exhibits alternation between two different phases, quiescent and turbulent, is examined in detail. We study the energy transfers between different components and modes, and find the classical picture of barotropic/baroclinic energy transfers to be too simplistic. We also discuss the dependence on thermal damping and on the imposed vertical shear. Both have a strong influence on the flow evolution. Thermal damping is a major factor affecting the stability of the flow while vertical shear controls the number of jets in the domain, qualitatively through the Rhines scale LRh = √U/β.
Close

Details

Original languageEnglish
Pages (from-to)586-618
Number of pages33
JournalJournal of Fluid Mechanics
Volume816
Early online date8 Mar 2017
DOIs
StatePublished - Apr 2017

    Research areas

  • Baroclinic flows, Geostrophic turbulence, Jets

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Vortex scaling ranges in two-dimensional turbulence

    Burgess, B. H., Dritschel, D. G. & Scott, R. K. Nov 2017 In : Physics of Fluids. 29, 11, 12 p., 111104

    Research output: Contribution to journalArticle

  2. Interaction between a quasi-geostrophic buoyancy filament and a heton

    Reinaud, J. N., Carton, X. & Dritschel, D. G. Sep 2017 In : Fluids. 2, 3, 20 p., 37

    Research output: Contribution to journalArticle

  3. Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Reinaud, J. N., Dritschel, D. G. & Carton, X. Aug 2017 In : Physics of Fluids. 29, 8, 16 p., 086603

    Research output: Contribution to journalArticle

  4. Comparison of variational balance models for the rotating shallow water equations

    Dritschel, D. G., Gottwald, G. & Oliver, M. Jul 2017 In : Journal of Fluid Mechanics. 822, p. 689-716 28 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Comparison of variational balance models for the rotating shallow water equations

    Dritschel, D. G., Gottwald, G. & Oliver, M. Jul 2017 In : Journal of Fluid Mechanics. 822, p. 689-716 28 p.

    Research output: Contribution to journalArticle

  2. The characteristics of billows generated by internal solitary waves

    Carr, M., Franklin, J., King, S. E., Davies, P., Grue, J. & Dritschel, D. G. Feb 2017 In : Journal of Fluid Mechanics. 812, p. 541-577

    Research output: Contribution to journalArticle

  3. Scaling theory for vortices in the two-dimensional inverse energy cascade

    Burgess, B. H. & Scott, R. K. Jan 2017 In : Journal of Fluid Mechanics. 811, p. 742-756 15 p.

    Research output: Contribution to journalArticle

  4. Balanced solutions for an ellipsoidal vortex in a rotating stratified flow

    Mckiver, W. J. & Dritschel, D. G. Sep 2016 In : Journal of Fluid Mechanics. 802, p. 333-358 26 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Fluid Mechanics (Journal)

    Dritschel, D. G. (Editor)
    2005 → …

    Activity: Publication peer-review and editorial workEditor of research journal

ID: 249029829