Skip to content

Research at St Andrews

On the Gruenberg–Kegel graph of integral group rings of finite groups

Research output: Research - peer-reviewArticle



The prime graph question asks whether the Gruenberg–Kegel graph of an integral group ring ℤG, i.e. the prime graph of the normalized unit group of ℤG, coincides with that one of the group G. In this note, we prove for finite groups G a reduction of the prime graph question to almost simple groups. We apply this reduction to finite groups G whose order is divisible by at most three primes and show that the Gruenberg–Kegel graph of such groups coincides with the prime graph of G.


Original languageEnglish
Number of pages13
JournalInternational Journal of Algebra and Computation
VolumeOnline Ready
StatePublished - 24 Aug 2017

    Research areas

  • Integral group rings, Torsion units, Gruenberg–Kegel graph

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The status of the Zassenhaus conjecture for small groups

    Bächle, A., Herman, A., Konovalov, A., Margolis, L. & Singh, G. 5 Apr 2017 In : Experimental Mathematics. Latest Articles, 6 p.

    Research output: Research - peer-reviewArticle

  2. Software Carpentry: Programming with GAP

    Software Carpentry team 18 Nov 2016 Zenodo

    Research output: ResearchOther contribution

  3. HPC-GAP: engineering a 21st-century High-Performance Computer algebra system

    Behrends, R., Hammond, K., Janjic, V., Konovalov, A., Linton, S. A., Loidl, H-W., Maier, P. & Trinder, P. 10 Sep 2016 In : Concurrency and Computation : Practice and Experience. 28, 13, p. 3606-3636 33 p.

    Research output: Research - peer-reviewArticle

  4. Ten Simple Rules for taking advantage of Git and GitHub

    Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J., da Veiga Leprevost, F., Fufezan, C., Ternent, T., Eglen, S. J., Katz, D. S., Pollard, T. J., Konovalov, A., Flight, R. M., Blin, K. & Vizcaíno, J. A. 14 Jul 2016 In : PLoS Computational Biology. 12, 7, 11 p., e1004947

    Research output: Research - peer-reviewArticle

  5. Interoperability in the OpenDreamKit project: the Math-in-the-Middle approach

    Dehaye, P-O., Iancu, M., Kohlhase, M., Konovalov, A., Lelièvre, S., Müller, D., Pfeiffer, M., Rabe, F., Thiéry, N. M. & Wiesling, T. 2016 Intelligent Computer Mathematics: 9th International Conference, CICM 2016, Bialystok, Poland, July 25-29, 2016, Proceedings. Kohlhase, M., Johansson, M., Miller, B., de Moura, L. & Tompa, F. (eds.). Cham: Springer, p. 117-131 15 p. (Lecture Notes in Computer Science; vol. 9791)

    Research output: ResearchConference contribution

Related by journal

  1. A dynamical definition of f.g. virtually free groups

    Bennett, D. & Bleak, C. Feb 2016 In : International Journal of Algebra and Computation. 26, 1, p. 105-121 17 p.

    Research output: Research - peer-reviewArticle

  2. Every group is a maximal subgroup of the free idempotent generated semigroup over a band

    Dolinka, I. & Ruskuc, N. May 2013 In : International Journal of Algebra and Computation. 23, 3, p. 573-581

    Research output: Research - peer-reviewArticle

  3. Unary FA-presentable semigroups

    Cain, A. J., Ruskuc, N. & Thomas, R. M. 8 Jun 2012 In : International Journal of Algebra and Computation. 22, 4, 29 p., 1250038

    Research output: Research - peer-reviewArticle


    Gray, R. & Kambites, M. Nov 2011 In : International Journal of Algebra and Computation. 21, 7, p. 1135-1147 13 p.

    Research output: Research - peer-reviewArticle

ID: 250971182