Skip to content

Research at St Andrews

Optimisation of perovskite materials for fuel electrodes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Author(s)

SW Tao, JTS Irvine

School/Research organisations

Abstract

Excellent thermal and mechanical stability, physical compatibility with electrolyte materials and relatively low cost have attracted interest in the application of perovskite oxide materials as fuel electrodes in SOFC designs. The present fuel electrode of choice is a nickel/YSZ cermet; the nickel acts as a fuel oxidation catalyst and provides electronic conductivity, whilst the YSZ provides oxygen ion conductivity. The challenge is to develop a single phase oxide material which provides all of the above and at the same time reduces the problems of coking, nickel sintering and sulphur poisoning sometimes encountered with the nickel/YSZ cermet. A rationale for the application of perovskites as fuel electrodes is given and the defect chemistry of perovskites is then reviewed. Attention is given to reducible transition metal ions, doping, non-stoichiometry and the effects these have on chemical stability and both the magnitude and mechanism of conduction. Findings are summarised and the need for an optimal doping strategy is identified. We report a nickel-free solid oxide fuel cell (SOFC) anode, La0.75Sr0.25Cr0.5Mn0.5O3, with comparable electrochemical performance to Ni/YSZ cermets. The electrode polarisation resistance approaches 0.2ohmcm(2) at 900degreesC in 97%H-2/3%H2O. Very good performance is achieved for methane oxidation without using excess steam. The anode is stable in both fuel and air conditions and shows stable electrode performance in methane. Thus both redox stability and operation in low steam hydrocarbons have been demonstrated, overcoming two of the major limitations of the current generation of nickel zirconia cermet SOFC anodes.

Close

Details

Original languageEnglish
Title of host publicationMIXED IONIC ELECTRONIC CONDUCTING PEROVSKITES FOR ADVANCED ENERGY SYSTEMS
EditorsN Orlovskaya, N Browning
Place of PublicationDORDRECHT
PublisherSpringer
Pages87-97
Number of pages11
ISBN (Print)1-4020-1943-2
Publication statusPublished - 2004
EventNATO Advanced Research Workshop on Mixed Ionic Electronic Conducting (MIEC) Perovskites for Advanced Energy System - Kiev, Ukraine
Duration: 8 Jun 200312 Jun 2003

Publication series

NameNATO SCIENCE SERIES, SERIES II: MATHEMATICS, PHYSICS AND CHEMISTRY
PublisherSPRINGER
Volume173

Conference

ConferenceNATO Advanced Research Workshop on Mixed Ionic Electronic Conducting (MIEC) Perovskites for Advanced Energy System
Country/TerritoryUkraine
CityKiev
Period8/06/0312/06/03

    Research areas

  • solid oxide fuel cell, SOFC CATHODES, anode, perovskite, ANODE, CELLS, fuel electrode

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode

    Li, B., Irvine, J. T. S., Ni, J. & Ni, C., 15 Jan 2022, In: Applied Energy. 306, Part B, 118117.

    Research output: Contribution to journalArticlepeer-review

  2. Computational screening of anode coatings for garnet-type solid-state batteries

    Liu, C., Fruchtl, H., Irvine, J. T. S. & Buehl, M., 2022, In: Batteries and Supercaps. In press

    Research output: Contribution to journalArticlepeer-review

  3. Iron-based electrode materials for solid oxide fuel cells and electrolysers

    Ni, C., Zhou, J., Zhang, Z., Li, S., Ni, J., Wu, K. & Irvine, J. T. S., 1 Dec 2021, In: Energy & Environmental Science. 14, 12, p. 6287-6319 33 p.

    Research output: Contribution to journalReview articlepeer-review

  4. Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study

    Menezes, I., Capelo-Neto, J., Pestana, C. J., Clemente, A., Hui, J., Irvine, J. T. S., Nimal Gunaratne, H. Q., Robertson, P. K. J., Edwards, C., Gillanders, R. N., Turnbull, G. A. & Lawton, L. A., 15 Nov 2021, In: Journal of Environmental Management. 298, 11 p., 113519.

    Research output: Contribution to journalArticlepeer-review

  5. Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxides

    Lee, J., Naden, A. B., Savaniu, C. D., Connor, P. A., Payne, J. L., Skelton, J., Gibbs, A., Hui, J., Parker, S. & Irvine, J. T. S., 7 Oct 2021, In: Advanced Energy Materials. 11, 37, 7 p., 2101337.

    Research output: Contribution to journalArticlepeer-review

ID: 47288333

Top