Skip to content

Research at St Andrews

Oxygen storage capacity and thermal stability of CuMnO2-CeO2 Composite System

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Xiubing Huang, Chengsheng Ni, Guixia Zhao, John T.S. Irvine

School/Research organisations

Abstract

Fast and reversible oxygen diffusion in solid oxides depending on oxygen partial pressure at low temperatures is a promising strategy for improving the overall performance and service lifetime of many energy-related materials. However, the high energy required for the redox reaction of cations and their high thermodynamic barriers have impeded the realization of fast oxygen diffusion at low temperatures. Herein, we report enhanced oxygen diffusion and storage capacity of monoclinic crednerite CuMnO2 at a lower temperature by surface modification with CeO2. The fast and reversible oxygen uptake/release can be attributed to CeO2 that serves as fast oxygen diffusion channel between bulk CuMnO2 and the surrounding atmospheres. Importantly, the amount of CeO2 in the CuMnO2-CeO2 composite system has great effect on the total oxygen storage capacity and redox behaviour. Our findings could provide useful information for developing effective oxygen storage materials in wide energy-related applications.

Close

Details

Original languageEnglish
Pages (from-to)12958-12964
JournalJournal of Materials Chemistry A
Volume3
Issue number24
Early online date12 May 2015
DOIs
Publication statusPublished - 28 Jun 2015

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

  4. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  5. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

Related by journal

  1. A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis

    Grzybek, J., Roth, W. J., Gil, B., Korzeniowska, A., Mazur, M., Čejka, J. & Morris, R. E., 7 Apr 2019, In : Journal of Materials Chemistry A. 7, 13, p. 7701-7709 9 p.

    Research output: Contribution to journalArticle

  2. Exsolution of Fe-Ni alloy nanoparticles from (La,Sr)(Cr,Fe,Ni)O3 perovskites as potential oxygen transport membrane catalysts for methane reforming

    Papargyriou, D., Miller, D. N. & Irvine, J. T. S., 14 Jul 2019, In : Journal of Materials Chemistry A. 7, 26, p. 15812-15822 11 p.

    Research output: Contribution to journalArticle

  3. Ultrafast post-synthetic modification of a pillared cobalt(II)-based metal-organic framework via sulfurization of its pores for high-performance supercapacitors

    Abazari, R., Sanati, S., Morsali, A., Slawin, A. M. Z., Carpenter-Warren, C. L., Chen, W. & Zheng, A., 21 May 2019, In : Journal of Materials Chemistry A. 7, 19, p. 11953-11966 14 p.

    Research output: Contribution to journalArticle

  4. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells

    Hou, J., Miao, L., Hui, J., Bi, L., Liu, W. & Irvine, J. T. S., 14 Jun 2018, In : Journal of Materials Chemistry A. 6, 22, p. 10411-10420 10 p.

    Research output: Contribution to journalArticle

ID: 190852781

Top