Skip to content

Research at St Andrews

Pairwise interaction point processes for modelling bivariate spatial point patterns in the presence of interaction uncertainty

Research output: Contribution to journalArticle


Current ecological research seeks to understand the mechanisms that sustain biodiversity and allow a large number of species to coexist. Coexistence concerns inter-individual interactions. Consequently, there is an interest in identifying and quantifying interactions within and between species as reflected in the spatial pattern formed by the individuals. This study analyses the spatial pattern formed by the locations of plants in a community with high biodiversity from Western Australia. We fit a pairwise interaction Gibbs marked point process to the data using a Bayesian approach and quantify the inhibitory interactions within and between the two species. We quantitatively discriminate between competing models corresponding to different inter-specific and intraspecific interactions via posterior model probabilities. The analysis provides evidence that the intraspecific interactions for the two species of the genus Banksia are generally similar to those between the two species providing some evidence for mechanisms that sustain biodiversity.


Original languageEnglish
JournalJournal of Environmental Statistics
Issue number3
Publication statusPublished - Sep 2015

    Research areas

  • Gibbs point processes, Multivariate spatial point patterns, Reversible jump Markov chain Monte Carlo

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Careful prior specification avoids incautious inference for log-Gaussian Cox point processes

    Sørbye, S., Illian, J. B., Simpson, D. P., Burlsem, D. & Rue, H., Apr 2019, In : Journal of the Royal Statistical Society: Series C (Applied Statistics). 68, 3, p. 543-564

    Research output: Contribution to journalArticle

  2. inlabru: an R package for Bayesian spatial modelling from ecological survey data

    Bachl, F. E., Lindgren, F., Borchers, D. L. & Illian, J. B., 21 Mar 2019, In : Methods in Ecology and Evolution. Early View, 7 p.

    Research output: Contribution to journalArticle

  3. Understanding species distribution in dynamic populations: a new approach using spatio‐temporal point process models

    Soriano-Redondo, A., Jones-Todd, C. M., Bearhop, S., Hilton, G. M., Lock, L., Stanbury, A., Votier, S. C. & Illian, J. B., 4 Mar 2019, In : Ecography. Early View

    Research output: Contribution to journalArticle

  4. Non-stationary Gaussian models with physical barriers

    Bakka, H., Vanhatalo, J., Illian, J. B., Simpson, D. & Rue, H., 18 Jan 2019, In : Spatial Statistics. In press

    Research output: Contribution to journalArticle

  5. Accounting for preferential sampling in species distribution models

    Pennino, M. G., Paradinas, I., Illian, J. B., Muñoz, F., Bellido, J. M., López-Quílez, A. & Conesa, D., 1 Jan 2019, In : Ecology and Evolution. 9, 1, p. 653-663 11 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Using INLA to fit a complex point process model with temporally varying effects – a case study

    Illian, J. B., Soerbye, S., Rue, H. & Hendrichsen, D., Jul 2012, In : Journal of Environmental Statistics. 3, 7

    Research output: Contribution to journalArticle

ID: 220442010