Skip to content

Research at St Andrews

Palaeoenvironmental records from fossil corals: the effects of submarine diagenesis on temperature and climate estimates

Research output: Contribution to journalArticle

Author(s)

Nicola Allison, Adrian Anthony Finch, JM Webster, DW Clague

School/Research organisations

Abstract

The geochemistry of coral skeletons may reflect seawater conditions at the time of deposition and the analysis of fossil skeletons offers a method to reconstruct past climate. However the precipitation of cements in the primary coral skeleton during diagenesis may significantly affect bulk skeletal geochemistry. We used secondary ion mass spectrometry (SIMS) to measure Sr, Mg, B, U and Ba concentrations in primary coral aragonite and aragonite and calcite cements in fossil Porites corals from submerged reefs around the Hawaiian Islands. Cement and primary coral geochemistry were significantly different in all corals. We estimate the effects of cement inclusion on climate estimates from drilled coral samples, which combine cements and primary coral aragonite. Secondary 1% calcite or similar to 2% aragonite cement contamination significantly affects Sr/Ca SST estimates by +1 degrees C and -0.4 to -0.9 degrees C, respectively. Cement inclusion also significantly affects Mg/Ca, B/Ca and U/Ca SST estimates in some corals. X-ray diffraction (XRD) will not detect secondary aragonite cements and significant calcite contamination may be below the limit of detection (similar to 1 %) of the technique. Thorough petrographic examination of fossils is therefore essential to confirm that they are pristine before bulk drilled samples are analysed. To confirm that the geochemistry of the original coral structures is not affected by the precipitation of cements in adjacent pore spaces we analysed the primary coral aragonite in cemented and uncemented areas of the skeleton. Sr/Ca, B/Ca and U/Ca of primary coral aragonite is not affected by the presence of cements in adjacent interskeletal pore spaces i.e. the coral structures maintain their original composition and selective SIMS analysis of these structures offers a route to the reconstruction of accurate SSTs from altered coral skeletons. However, Mg/Ca and Ba/Ca of primary coral aragonite are significantly higher in parts of skeletons infilled with high Mg calcite cement. We hypothesise this reflects cement infilling of intraskeletal pore spaces in the primary coral structure. (C) 2007 Elsevier Ltd. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)4693-4703
Number of pages11
JournalGeochimica et Cosmochimica Acta
Volume71
DOIs
StatePublished - 1 Oct 2007

    Research areas

  • BORON ISOTOPIC COMPOSITION, SEA-SURFACE TEMPERATURE, PAPUA-NEW-GUINEA, TRACE-ELEMENTS, SCLERACTINIAN CORALS, MARINE CARBONATES, CALCITE, SKELETONS, HAWAII, RATIOS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry

    Allison, N., Cole, C., Hintz, C., Hintz, K., Rae, J. & Finch, A. 10 Oct 2018 In : Chemical Geology. 497, p. 162-169 8 p.

    Research output: Contribution to journalArticle

  2. Corals concentrate dissolved inorganic carbon to facilitate calcification

    Allison, N., Cohen, I., Finch, A. A., Erez, J. & Tudhope, A. W. 22 Dec 2014 In : Nature Communications. 5, 5741

    Research output: Contribution to journalArticle

Related by journal

  1. Isotopic fractionation of zirconium during magmatic differentiation and the stable isotope composition of the silicate Earth

    Inglis, E., Moynier, F., Creech, J., Deng, Z., Day, J., Teng, F-Z., Bizzarro, M., Jackson, M. & Savage, P. 14 Feb 2019 In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

  2. Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden

    Rose, C., Fischer, W. W., Finnegan, S. & Fike, D. A. 1 Feb 2019 In : Geochimica et Cosmochimica Acta. 246, p. 299-316 18 p.

    Research output: Contribution to journalArticle

  3. Assessing foraminifera biomineralisation models through trace element data of cultures under variable seawater chemistry

    Evans, D., Müller, W. & Erez, J. 8 Mar 2018 In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

  4. Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures

    Breitenbach, S. F. M., Mleneck-Vautravers, M. J., Grauel, A. L., Lo, L., Bernasconi, S. M., Müller, I. A., Rolfe, J., Gázquez, F., Greaves, M. & Hodell, D. A. 1 Sep 2018 In : Geochimica et Cosmochimica Acta. 236, p. 283-296 14 p.

    Research output: Contribution to journalArticle

  5. Prediction of equilibrium isotopic fractionation of the gypsum/bassanite/water system using first-principles calculations

    Liu, T., Artacho, E., Gázquez, F., Walters, G. & Hodell, D. 5 Sep 2018 In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

ID: 453562