Skip to content

Research at St Andrews

Palaeoenvironmental records from fossil corals: the effects of submarine diagenesis on temperature and climate estimates

Research output: Contribution to journalArticle

Author(s)

Nicola Allison, Adrian Anthony Finch, JM Webster, DW Clague

School/Research organisations

Abstract

The geochemistry of coral skeletons may reflect seawater conditions at the time of deposition and the analysis of fossil skeletons offers a method to reconstruct past climate. However the precipitation of cements in the primary coral skeleton during diagenesis may significantly affect bulk skeletal geochemistry. We used secondary ion mass spectrometry (SIMS) to measure Sr, Mg, B, U and Ba concentrations in primary coral aragonite and aragonite and calcite cements in fossil Porites corals from submerged reefs around the Hawaiian Islands. Cement and primary coral geochemistry were significantly different in all corals. We estimate the effects of cement inclusion on climate estimates from drilled coral samples, which combine cements and primary coral aragonite. Secondary 1% calcite or similar to 2% aragonite cement contamination significantly affects Sr/Ca SST estimates by +1 degrees C and -0.4 to -0.9 degrees C, respectively. Cement inclusion also significantly affects Mg/Ca, B/Ca and U/Ca SST estimates in some corals. X-ray diffraction (XRD) will not detect secondary aragonite cements and significant calcite contamination may be below the limit of detection (similar to 1 %) of the technique. Thorough petrographic examination of fossils is therefore essential to confirm that they are pristine before bulk drilled samples are analysed. To confirm that the geochemistry of the original coral structures is not affected by the precipitation of cements in adjacent pore spaces we analysed the primary coral aragonite in cemented and uncemented areas of the skeleton. Sr/Ca, B/Ca and U/Ca of primary coral aragonite is not affected by the presence of cements in adjacent interskeletal pore spaces i.e. the coral structures maintain their original composition and selective SIMS analysis of these structures offers a route to the reconstruction of accurate SSTs from altered coral skeletons. However, Mg/Ca and Ba/Ca of primary coral aragonite are significantly higher in parts of skeletons infilled with high Mg calcite cement. We hypothesise this reflects cement infilling of intraskeletal pore spaces in the primary coral structure. (C) 2007 Elsevier Ltd. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)4693-4703
Number of pages11
JournalGeochimica et Cosmochimica Acta
Volume71
DOIs
Publication statusPublished - 1 Oct 2007

    Research areas

  • BORON ISOTOPIC COMPOSITION, SEA-SURFACE TEMPERATURE, PAPUA-NEW-GUINEA, TRACE-ELEMENTS, SCLERACTINIAN CORALS, MARINE CARBONATES, CALCITE, SKELETONS, HAWAII, RATIOS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry

    Allison, N., Cole, C., Hintz, C., Hintz, K., Rae, J. & Finch, A., 10 Oct 2018, In : Chemical Geology. 497, p. 162-169 8 p.

    Research output: Contribution to journalArticle

  2. Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp. an exploration of potential interaction mechanisms

    Cole, C., Finch, A. A., Hintz, C., Hintz, K. & Allison, N., Jun 2018, In : Coral Reefs. 37, 2, p. 471-481 11 p.

    Research output: Contribution to journalArticle

  3. Understanding cold bias: variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals

    Cole, C. S., Finch, A. A., Hintz, C., Hintz, K. & Allison, N., 31 May 2016, In : Scientific Reports. 6, 26888.

    Research output: Contribution to journalArticle

  4. Corals concentrate dissolved inorganic carbon to facilitate calcification

    Allison, N., Cohen, I., Finch, A. A., Erez, J. & Tudhope, A. W., 22 Dec 2014, In : Nature Communications. 5, 5741.

    Research output: Contribution to journalArticle

Related by journal

  1. Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze Block across the Ediacaran-Cambrian transition

    Chen, Y., Diamond, C. W., Stüeken, E. E., Cai, C., Gill, B. C., Zhang, F., Bates, S. M., Chu, X., Ding, Y. & Lyons, T. W., 18 May 2019, In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

  2. Decimeter-scale mapping of carbonate-controlled trace element distribution in Neoarchean cuspate stromatolites

    Warke, M. R., Edwards, N. P., Wogelius, R. A., Manning, P. L., Bergmann, U., Egerton, V. M., Kimball, K. C., Garwood, R. J., Beukes, N. J. & Schröder, S., 15 Sep 2019, In : Geochimica et Cosmochimica Acta. 261

    Research output: Contribution to journalArticle

  3. Effects of pH on redox proxies in a Jurassic rift lake: implications for interpreting environmental records in deep time

    Stüeken, E. E., Martinez, A., Love, G., Olsen, P. E., Bates, S. & Lyons, T. W., 1 May 2019, In : Geochimica et Cosmochimica Acta. 252, p. 240-267

    Research output: Contribution to journalArticle

  4. Experimentally determined Si isotope fractionation between zircon and quartz

    Trail, D., Savage, P. S. & Moynier, F., 1 Sep 2019, In : Geochimica et Cosmochimica Acta. 260, p. 257-274

    Research output: Contribution to journalArticle

  5. Isotopic fractionation of zirconium during magmatic differentiation and the stable isotope composition of the silicate Earth

    Inglis, E., Moynier, F., Creech, J., Deng, Z., Day, J., Teng, F-Z., Bizzarro, M., Jackson, M. & Savage, P., 1 Apr 2019, In : Geochimica et Cosmochimica Acta. 250, p. 311-323 13 p.

    Research output: Contribution to journalArticle

ID: 453562

Top