Skip to content

Research at St Andrews

Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny

Research output: Contribution to journalArticle

Abstract

A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7. Ba to 209. Ma with significant populations at ~245. Ma and 220. Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.
Close

Details

Original languageEnglish
Pages (from-to)214-224
Number of pages11
JournalJournal of Asian Earth Sciences
Volume76
DOIs
Publication statusPublished - 25 Oct 2013

    Research areas

  • Indosinian Orogeny, Late Triassic, Red-beds, Singapore

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Anaerobic nitrogen cycling on a Neoarchean ocean margin

    Mettam, C. W., Zerkle, A. L., Claire, M., Prave, A. R., Poulton, S. W. & Junium, C. K., 17 Sep 2019, In : Earth and Planetary Science Letters. 527, 115800.

    Research output: Contribution to journalArticle

  2. Low δ18O rocks in the Belomorian belt, NW Russia, and Scourie dikes, NW Scotland: a record of ancient meteoric water captured by the early Paleoproterozoic global mafic magmatism

    Zakharov, D. O., Bindeman, I. N., Serebryakov, N. S., Prave, A. R., Azimov, P. Y. & Babarina, I. I., 24 Aug 2019, In : Precambrian Research. In press

    Research output: Contribution to journalArticle

  3. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

    Baker, T. R., Prave, A. R. & Spencer, C. J., Aug 2019, In : Precambrian Research. 329, p. 224-231

    Research output: Contribution to journalArticle

  4. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals

    Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V. & Kirsimäe, K., 5 May 2019, In : Chemical Geology. 512, p. 43-57 15 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Detrital records for Upper Permian-Lower Triassic succession in the Shiwandashan Basin, South China and implication for Permo-Triassic (Indosinian) orogeny

    Hu, L., Cawood, P. A., Du, Y., Xu, Y., Xu, W. & Huang, H., Feb 2015, In : Journal of Asian Earth Sciences. 98, p. 152-166 15 p.

    Research output: Contribution to journalArticle

  2. Neo-Tethyan magmatism and metallogeny in Myanmar - An Andean analogue?

    Gardiner, N. J., Searle, M. P., Robb, L. J. & Morley, C. K., 1 Jul 2015, In : Journal of Asian Earth Sciences. 106, p. 197-215 19 p.

    Research output: Contribution to journalArticle

ID: 143200283