Skip to content

Research at St Andrews

Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine

Research output: Contribution to journalArticle

Author(s)

Haoran Xu, Bin Chen, Peng Tan, Houcheng Zhang, Jinliang Yuan, John T. S. Irvine, Meng Ni

School/Research organisations

Abstract

A novel system consisting of an external heat source, a direct carbon solid oxide fuel cell (DC-SOFC), a regenerator and an air standard Otto cycle engine is proposed to improve the performance of the DC-SOFC. Considering the electrochemical/chemical reactions, ionic/electronic charge transport, mass/momentum transport and heat transfer, a 2D tubular DC-SOFC model shows that the overall heat released in the cell can be smaller than, equal to or larger than the heat required by the internal Boudouard reaction. Three different operating modes of the proposed system are identified, and accordingly, analytical expressions for the equivalent power output and efficiency of the proposed system are derived under different operating conditions. The modeling results show that the Otto heat engine can effectively recover the waste heat from the DC-SOFC for additional power production especially at large operating current density. Comprehensive parametric studies are conducted to investigate the effects of the different operating conditions of DC-SOFC on its performance and heat generation. The effects of compression ratio, internal irreversibility factor and power dissipation of the Otto heat engine on the system performance improvement are also studied.
Close

Details

Original languageEnglish
Pages (from-to)761-770
Number of pages10
JournalEnergy Conversion and Management
Volume165
Early online date7 Apr 2018
DOIs
Publication statusPublished - 1 Jun 2018

    Research areas

  • Solid oxide fuel cell, Carbon gasification, Air standard Otto heat engine, Performance improvement, Parametric study

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  3. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  4. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  5. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

ID: 252771488

Top