Skip to content

Research at St Andrews

Performance of direct carbon fuel cells operated on coal and effect of operation mode

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Andrew C. Chien, Ana Arenillas, Cairong Jiang, John T. S. Irvine

School/Research organisations

Abstract

Previous experimental results have shown that a system with molten carbonate and solid oxide electrolyte is feasible for Direct Carbon Fuel Cell (DCFC). A study is presented to investigate cell performance with a range of solid carbon (i.e. coals, biochars, graphite) and operation mode in this hybrid electrolyte system. The results show that less crystalline coal with high fixed carbon, low sulfur, medium volatile material and moisture is best suited to this system. Using high rank of fuel such as anthracite coal, good cell performance can be obtained only by elevating temperature and with adequate pretreatment to remove impurities. Discussion of cell operation indicates that cell degradation and operation failure were due to coal agglomeration, ash buildup, and limited fuel supply in potentiostatic mode. Instead, galvanostatic operation gave stable cell performance over 60 hours. This result allows better understanding of anode reaction mechanism on the hybrid electrolyte system. Thus, long-term operation is promised when suitable solid fuel and optimized operation parameters are applied. (C) 2014 The Electrochemical Society. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)F588-F593
Number of pages6
JournalJournal of The Electrochemical Society
Volume161
Issue number5
DOIs
Publication statusPublished - 11 Mar 2014

    Research areas

  • Molten-carbonate, Solid oxide, Electrochemical oxidation, Direct conversion, Electrolyte, Temperature, Behavior, Anode

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticlepeer-review

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 1 Jan 2021, In: Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticlepeer-review

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In: Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticlepeer-review

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In: Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In: Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticlepeer-review

  2. Preparation and testing of metal/Ce0.80Gd0.20O1.90 (metal: Ni, Pd, Pt, Rh, Ru) co-impregnated La0.20Sr0.25Ca0.45TiO3 anode microstructures for solid oxide fuel cells

    Price, R., Cassidy, M., Grolig, J. G., Mai, A. & Irvine, J. T. S., 12 Mar 2019, In: Journal of The Electrochemical Society. 166, 4, p. F343-F349

    Research output: Contribution to journalArticlepeer-review

  3. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S., 14 Nov 2018, In: Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticlepeer-review

  4. La and Ca-doped A-site deficient strontium titanates anode for electrolyte supported direct methane solid oxide fuel cell

    Tiwari, P., Yue, X., Irvine, J. T. S. & Basu, S., 3 Aug 2017, In: Journal of The Electrochemical Society. 164, 9, p. F1030-F1036

    Research output: Contribution to journalArticlepeer-review

  5. Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal battery

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R., Connor, P. A. & Irvine, J. T. S., 25 Jul 2017, In: Journal of The Electrochemical Society. 164, 9, p. A2159-A2163

    Research output: Contribution to journalArticlepeer-review

ID: 130505749

Top