Skip to content

Research at St Andrews

Phase transition in perovskite oxide La0.75Sr0.25Cr0.5Mn0.5O3-d observed by in situ high temperature neutron powder diffraction

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

School/Research organisations

Abstract

(La0.75Sr0.25)Cr0.5Mn0.5O3-delta (LSCM) has recently been shown to be an efficient redox stable anode for solid oxide fuel cells (SOFCs). The structure of LSCM has been investigated by X-ray diffraction and neutron diffraction to further understand its properties under SOFC operating conditions. Samples were prepared with nominal A-site deficiency; however, neutron diffraction demonstrates that the A-site deficiency is actually minimal or even null, with spinel impurity compensating for low content of A-site species. This was not apparent from XRD. The perovskite oxide La0.75Sr0.25Cr0.5Mn0.5O3 ( LSCM) exhibits a rhombohedral structure with space group R3c (167), a = 5.4479(1)A, beta = 60.477(1)degrees, and V = 115.563 A(3) at room temperature. Conductivity and thermal expansion data in air exhibit an anomalous change starting at similar to 400 degrees C which we here demonstrate as being correlated to a phase transition. The perovskite phase undergoes a R3c -> Pm3m, rhombohedral to cubic phase transition over the temperature range from 500 to over 1100 degrees C as observed using in situ high-temperature neutron powder diffraction. The fraction of the cubic phase increases with increasing temperature and reaches 85% at 1000 degrees C. The phase transition is gradual; therefore, any sudden volume change due to a phase transition would be minimized, allowing a good electrolyte/anode interface on thermal cycling. The reduced form of La0.75Sr0.25Cr0.5Mn0.5O3-delta exhibits a primitive cubic structure with space group Pm3m, which is the same as the major phase of La0.75Sr0.25Cr0.5Mn0.5O3 in air at high temperatures; therefore, the stresses due to phase changes on redox cycling may be minimized.

Close

Details

Original languageEnglish
Pages (from-to)5453-5460
Number of pages8
JournalChemistry of Materials
Volume18
Issue number23
DOIs
Publication statusPublished - 14 Nov 2006

    Research areas

  • FUEL-CELLS, ANODE, SYSTEM

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Enhancing electrochemical CO2 reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells

    Lee, S., Kim, M., Lee, K. T., Irvine, J. T. S. & Shin, T. H., 12 May 2021, In: Advanced Energy Materials. Early View, 12 p., 2100339.

    Research output: Contribution to journalArticlepeer-review

  2. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

    Price, R., Weissen, U., Grolig, J. G., Cassidy, M., Mai, A. & Irvine, J. T. S., 8 Apr 2021, In: Journal of Materials Chemistry A. 15 p.

    Research output: Contribution to journalArticlepeer-review

  3. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  5. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Chemistry of Materials (Journal)

    Finlay Morrison (Reviewer)

    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Cation control of cooperative CO2 adsorption in Li-containing mixed cation forms of the flexible zeolite merlinoite

    Georgieva, V. M., Bruce, E. L., Chitac, R. G., Lozinska, M. M., Hall, A., Murray, C., Smith, R., Turrina, A. & Wright, P. A., 10 Feb 2021, In: Chemistry of Materials. Articles ASAP

    Research output: Contribution to journalArticlepeer-review

  2. Local structure and order-disorder transitions in "empty" ferroelectric tetragonal tungsten bronzes

    McNulty, J. A., Pesquera, D., Gardner, J., Rotaru, A., Playford, H. Y., Tucker, M. G., Carpenter, M. A. & Morrison, F. D., 13 Oct 2020, In: Chemistry of Materials. 32, 19, p. 8492-8501

    Research output: Contribution to journalArticlepeer-review

  3. Large crystalline domains and enhanced exciton diffusion length enable efficient organic solar cells

    Zhang, Y., Sajjad, M. T., Blaszczyk, O., Parnell, A. J., Ruseckas, A., Serrano, L. A., Cooke, G. & Samuel, I. D. W., 10 Sep 2019, In: Chemistry of Materials. 31, 17, p. 6548-6557

    Research output: Contribution to journalArticlepeer-review

  4. n-type doping of organic semiconductors: immobilization via covalent anchoring

    Reiser, P., Benneckendorf, F. S., Barf, M-M., Müller, L., Bäuerle, R., Hillebrandt, S., Beck, S., Lovrincic, R., Mankel, E., Freudenberg, J., Jänsch, D., Kowalsky, W., Pucci, A., Jaegermann, W., Bunz, U. H. F. & Müllen, K., 11 Jun 2019, In: Chemistry of Materials. 31, 11, p. 4213-4221 9 p.

    Research output: Contribution to journalArticlepeer-review

ID: 365767

Top