Skip to content

Research at St Andrews

Phenotypic resistance in mycobacteria: is it because I am old or fat that I resist you?

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Robert J H Hammond, Vincent O Baron, Katarina Oravcova, Sam Lipworth, Stephen H Gillespie

School/Research organisations

Abstract

Synopsis
Objectives
We aimed to explore the phenomenon of phenotypic resistance to anti-mycobacterial antibiotics and to determine whether this was associated with cell age or presence of lipid bodies.

Methods
The accumulation of lipid body positive cells (lipid rich- LR) was followed using cell staining and flow cytometry. LR cells of M. smegmatis, M. marinum, M. fortuitum and BGC were separated from non-lipid body containing cells (lipid poor- LP) and their MBC determined. We also compared the MBC of LR and LP from “old” and “young” cultures.


Results
The LR cells of all species were more resistant to antibiotics than LP cells. For Mycobacterium bovis (BCG) the susceptibility ratios were as follows; Rifampicin-5X, isoniazid-16.7X, ethambutol-5X, ciprofloxacin-5X. Phenotypic resistance was found in LR cells irrespective of cell age.

Conclusions
We have shown that phenotypic antibiotic resistance is associated with the presence of lipid bodies irrespective of cell age. These data have important implications for our understanding of relapse in mycobacterial infections.

Close

Details

Original languageEnglish
JournalJournal of Antimicrobial Chemotherapy
VolumeAdvance Access
DOIs
Publication statusPublished - 9 Jul 2015

    Research areas

  • Mycobacterium tuberculosis, Antibiotic resistance, Lipid rich, Lipid poor

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Mimicking in-vivo exposures to drug combinations in-vitro: anti-tuberculosis drugs in lung lesions and the hollow fiber model of infection

    Kloprogge, F., Hammond, R., Kipper, K., Gillespie, S. H. & Della Pasqua, O., 13 Sep 2019, In : Scientific Reports. 9, 8 p., 13228.

    Research output: Contribution to journalArticle

  2. A tuberculosis molecular bacterial load assay (TB-MBLA)

    Sabiiti, W., Mtafya, B. A., Alferes De Lima, D., Dombay, E., Baron, V. O., Azam, K., Orascova, K., Sloan, D. J. & Gillespie, S. H., 6 Sep 2019, (Accepted/In press) In : Journal of Visualized Experiments.

    Research output: Contribution to journalArticle

  3. Can phenotypic data complement our understanding of antimycobacterial effects for drug combinations?

    Kloprogge, F., Hammond, R., Copas, A., Gillespie, S. H. & Della Pasqua, O., 25 Aug 2019, In : Journal of Antimicrobial Chemotherapy. Advance article, 7 p.

    Research output: Contribution to journalArticle

  4. Toxicity related to standard TB therapy for pulmonary tuberculosis and treatment outcomes in the REMoxTB study according to HIV status

    Tweed, C. D., Crook, A. M., Dawson, R., Diacon, A. H., McHugh, T. D., Mendel, C. M., Meredith, S. K., Mohapi, L., Murphy, M. E., Nunn, A. J., Phillips, P. P. J., Singh, K. P., Spigelman, M. & Gillespie, S. H., 14 Aug 2019, In : BMC Pulmonary Medicine. 19, 9 p., 152.

    Research output: Contribution to journalArticle

  5. Model-based relationship between the molecular bacterial load assay and time-to-positivity in liquid culture

    Svensson, R. J., Sabiiti, W., Kibiki, G. S., Ntinginya, N. E., Bhatt, N., Davies, G., Gillespie, S. H. & Simonsson, U. S. H., 29 Jul 2019, In : Antimicrobial Agents and Chemotherapy. Early

    Research output: Contribution to journalArticle

Related by journal

  1. Can phenotypic data complement our understanding of antimycobacterial effects for drug combinations?

    Kloprogge, F., Hammond, R., Copas, A., Gillespie, S. H. & Della Pasqua, O., 25 Aug 2019, In : Journal of Antimicrobial Chemotherapy. Advance article, 7 p.

    Research output: Contribution to journalArticle

  2. Comment on: Doxycycline in UK guidelines for hospital-acquired pneumonia

    Cevik, M., Russell, C. D. & Evans, M., 21 Feb 2019, In : Journal of Antimicrobial Chemotherapy. 74, 6

    Research output: Contribution to journalComment/debate

  3. Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation

    Millard, J., Pertinez, H., Bonnett, L., Model, E. M., Dartois, V., Johnson, J. L., Caws, M., Tiberi, S., Bolhuis, M., Alffenaar, J-W. C., Davies, G. & Sloan, D. J., 23 Mar 2018, In : Journal of Antimicrobial Chemotherapy. 73, 7, p. 1755-1762 8 p.

    Research output: Contribution to journalArticle

  4. Has primary care antimicrobial use really been increasing? Comparison of changes in different prescribing measures for a complete geographic population 1995–2014

    Neilly, M. D. J., Guthrie, B., Hernandez Santiago, V., Vadiveloo, T., Donnan, P. T. & Marwick, C. A., 1 Oct 2017, In : Journal of Antimicrobial Chemotherapy. 72, 10, p. 2921-2930 10 p.

    Research output: Contribution to journalArticle

  5. Improved power for TB phase IIa trials using a model-based pharmacokinetic-pharmacodynamic approach compared with commonly used analysis methods

    Svensson, R. J., Gillespie, S. H. & Simonsson, U. S. H., 1 Aug 2017, In : Journal of Antimicrobial Chemotherapy. 72, 8, p. 2311-2319 9 p.

    Research output: Contribution to journalArticle

ID: 194099904