Skip to content

Research at St Andrews

Phospholipase C-η enzymes as putative protein kinase C and Ca2+ signalling components in neuronal and neuroendocrine tissues

Research output: Contribution to journalArticle

DOI

Author(s)

Alan James Stewart, K Morgan, C Farquharson, RP Millar

School/Research organisations

Abstract

Phosphoinositol-specific phospholipase C enzymes (PLCs) are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C activation. A sixth class of phosphoinositol-specific PLC with a novel domain structure, PLC-eta (PLCeta) has recently been discovered in mammals. Recent research, reviewed here, shows that this class consists of two enzymes, PLCeta1 and PLCeta2. Both enzymes hydrolyze phosphatidylinositol 4,5-bisphosphate and are more sensitive to Ca2+ than other PLC isozymes and are likely to mediate G-protein-coupled receptor (GPCR) signalling pathways. Both enzymes are expressed in neuron-enriched regions, being abundant in the brain. We demonstrate that they are also expressed in neuroendocrine cell lines. PLCeta enzymes therefore represent novel proteins influencing intracellular Ca2+ dynamics and protein kinase C activation in the brain and neuroendocrine systems as putative mediation of GPCR regulation.
Close

Details

Original languageEnglish
Pages (from-to)243-248
Number of pages6
JournalNeuroendocrinology
Volume86
Issue number4
DOIs
Publication statusPublished - Nov 2007

    Research areas

  • Ca2+ Signalling, Protein Kinase C, Receptor-Mediated Signalling, Neuroendocrine, Neuron, Ca2+ signalling, protein kinase C, receptor-mediated signalling, neuroendocrine, neuron, SYNAPTIC VESICLE EXOCYTOSIS, PLECKSTRIN HOMOLOGY DOMAIN, G-BETA-GAMMA, TRANSCRIPTIONAL ACTIVATION, MOLECULAR-CLONING, RECEPTOR, CELLS, SECRETION, BIND, IDENTIFICATION

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Reduced plasma magnesium levels in type-1 diabetes associate with prothrombotic changes in fibrin clotting and fibrinolysis

    Sobczak, A. I. S., Phoenix, F. A., Pitt, S. J., Ajjan, R. A. & Stewart, A. J., 3 Jan 2020, In : Thrombosis and Haemostasis. eFirst, 10 p.

    Research output: Contribution to journalArticle

  2. Coagulatory defects in type-1 and type-2 diabetes

    Sobczak, A. I. S. & Stewart, A. J., 16 Dec 2019, In : International Journal of Molecular Sciences. 20, 24, 28 p., 6345.

    Research output: Contribution to journalReview article

  3. The X files: ''The mystery of X chromosome instability in Alzheimer's disease''

    Bajic, V. P., Essak, M., Zivkovic, L., Stewart, A. J., Zafirovic, S., Bajic, V., Gojobori, T., Isenovic, E. & Spremo-Potparevic, B., 13 Dec 2019, (Accepted/In press) In : Frontiers in Genetics.

    Research output: Contribution to journalReview article

  4. A metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distribution

    Coverdale, J. P. C., Barnett, J. P., Adamu, A. H., Griffiths, E. J., Stewart, A. J. & Blindauer, C. A., 1 Nov 2019, In : Metallomics. 11, 11, p. 1805-1819 15 p.

    Research output: Contribution to journalArticle

  5. Plasma non-esterified fatty acids contribute to increased coagulability in type-2 diabetes through altered plasma zinc speciation

    Sobczak, A. I. S., Katundu, K. G. H., Phoenix, F. A., Khazaipoul, S., Yu, R., Lampiao, F., Stefanowicz, F., Blindauer, C. A., Pitt, S. J., Smith, T. K., Ajjan, R. A. & Stewart, A. J., 28 Aug 2019, In : biorxiv. 38 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Medial amygdala Kiss1 neurons mediate female pheromone stimulation of luteinizing hormone in male mice

    Aggarwal, S., Tang, C., Sing, K., Kim, H. W., Millar, R. P. & Tello, J. A., Apr 2019, In : Neuroendocrinology. 108, 3, p. 172–189 18 p.

    Research output: Contribution to journalArticle

  2. Kisspeptin restores pulsatile LH secretion in patients with neurokinin B signaling deficiencies: physiological, pathophysiological and therapeutic implications

    Young, J., George, J., Tello, J., Francou, B., Bouligand, J., Guiochon-Mantel, A., Brailly-Tabard, S., Anderson, R. & Millar, R., Mar 2013, In : Neuroendocrinology. 97, 2, p. 193-202

    Research output: Contribution to journalArticle

  3. Retention and silencing of prepro-GnRH-II and type II GnRH receptor genes in mammals.

    Stewart, A. J., Katz, AA., Millar, RP. & Morgan, K., Nov 2009, In : Neuroendocrinology. 90, 4, p. 416-432 17 p.

    Research output: Contribution to journalArticle

  4. Antiproliferative effects of GnRH agonists: prospects and problems for cancer therapy

    White, CD., Stewart, A. J., Lu, ZL., Millar, RP. & Morgan, K., Aug 2008, In : Neuroendocrinology. 88, 2, p. 67-79 13 p.

    Research output: Contribution to journalArticle

ID: 434077

Top