Skip to content

Research at St Andrews

Photo-catalytic hydrogen production over Au/g-C3N4: effect of gold particle dispersion and morphology

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

M. Caux, H. Menard, Y. M. AlSalik, J. T. S. Irvine, H. Idriss

School/Research organisations

Abstract

Metal/semiconductor interactions affect electron transfer rates and this is central to photocatalytic hydrogen ion reduction. While this interaction has been studied in great detail on metal oxide semiconductors, not much is known of Au particles on top of polymeric semiconductors. The effects of gold nanoparticle size and dispersion on top of g-C3N4 were studied by core and valence level spectroscopy and transmission electron microscopy in addition to catalytic tests. The as-prepared, non-calcined catalysts displayed Au particles with uniform dimension (mean particle size = 1.8 nm) and multiple electronic states: XPS Au 4f7/2 lines at 84.9 and 87.1 eV (each with a spin–orbit splitting of 3.6–3.7 eV). These particles, which did not show localized surface plasmon resonance (LSPR), before the reaction, doubled in size after the reaction giving a pronounced LSPR at about 550 nm. The effect of the heating environment on these particles (in air or in H2) was further investigated. While heating in H2 gave Au nanoparticles of different shapes, heating under O2 gave exclusively spherical particles. Similar activity towards photocatalytic hydrogen ion reduction under UV excitation was seen in both cases, however. XPS Au 4f analyses indicated that an increase in deposition time, during catalyst preparation, resulted in an increase in the initial fraction of oxidized gold particles, which were easily reduced under hydrogen. The valence band region for Au/gC3N4 was further studied in an effort to compare it to what is already known for Au/metal oxide semiconductors. A shift of over 2 eV for the Au 5d doublets was noticed between reduced and oxidized gold particles with mean particle sizes between 2 and 6 nm, which is consistent with the final state effect. A narrow range of gold loading for optimal catalytic performance was seen, where it seems that a density of one Au particle per 10 × 10 nm2 is the most suitable. Particle size and shape had a minor effect on performance, which may indicate the absence of a plasmonic effect on the reaction rate.
Close

Details

Original languageEnglish
Pages (from-to)15974-15987
Number of pages14
JournalPhysical Chemistry Chemical Physics
Volume21
Issue number29
Early online date28 Jun 2019
DOIs
Publication statusPublished - 7 Aug 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticlepeer-review

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 1 Jan 2021, In: Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticlepeer-review

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In: Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticlepeer-review

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In: Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Physical Chemistry Chemical Physics (Journal)

    Finlay Morrison (Reviewer)

    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. A quinone based single-molecule switch as building block for molecular electronics

    Früchtl, H. A. & van Mourik, T., 4 Jan 2021, In: Physical Chemistry Chemical Physics. Advance article

    Research output: Contribution to journalArticlepeer-review

  2. Effects of crystal size on methanol to hydrocarbon conversion over single crystals of ZSM-5 studied by synchrotron infrared microspectroscopy

    Minova, I. B., Matam, S. K., Greenaway, A., Catlow, C. R. A., Frogley, M. D., Cinque, G., Wright, P. A. & Howe, R. F., 14 Sep 2020, In: Physical chemistry chemical physics : PCCP. 22, 34, p. 18849-18859 11 p.

    Research output: Contribution to journalArticlepeer-review

  3. Following the unusual breathing behaviour of 17O-enriched mixed-metal (Al,Ga)-MIL-53 using NMR crystallography

    Rice, C. M., Davis, Z. H., McKay, D., Bignami, G. P. M., Chitac, R. G., Dawson, D. M., Morris, R. E. & Ashbrook, S. E., 14 Jul 2020, In: Physical Chemistry Chemical Physics. 22, 26, p. 14514-14526 13 p.

    Research output: Contribution to journalArticlepeer-review

  4. Palladium–catalysed methoxycarbonylation of ethene with bidentate diphosphine ligands: a density functional theory study

    Ahmad, S., Crawford, L. E. & Buehl, M., 13 Oct 2020, In: Physical Chemistry Chemical Physics. Advance article, 7 p.

    Research output: Contribution to journalSpecial issuepeer-review

  5. Shape controlled assembly of carboxylic acids: formation of a binary monolayer by intercalation into molecular nanotunnels

    Ortiz de la Morena, R., Asyuda, A., Lu, H., Aitchison, H., Turner, K., Francis, S. M., Zharnikov, M. & Buck, M., 21 Feb 2020, In: Physical Chemistry Chemical Physics. 22, 7, p. 4205-4215 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 260483738

Top