Skip to content

Research at St Andrews

Pinpointing deep geothermal upflow in zones of complex tectono-volcanic degassing: new insights from Aluto volcano, Main Ethiopian Rift

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

E. Jolie, W. Hutchison, D.L. Driba, A. Jentsch, B. Gizaw

School/Research organisations

Abstract

Active rifts release large amounts of gases from deep sources to the atmosphere by advection and diffusion processes along permeable fracture zones. The objective of this study is to develop geothermal exploration concepts for areas with little or no hydrothermal surface expressions suitable for fluid sampling and analyses (e.g., hot springs, geysers, and fumaroles). In such areas, soil gas surveys can complement established geophysical and geochemical exploration. We report CO2, 222Rn (Radon) and 220Rn (Thoron) emission data and ground temperatures from the Aluto volcanic complex in the Main Ethiopian Rift to improve understanding of tectonic and volcanic controls on the existing geothermal system. This suite of gas emission measurements allows us to identify major, deep‐rooted permeable structures with active fluid circulation and identify suitable drilling targets for geothermal production wells on Aluto. We show that significant differences in gas signatures (i.e., efflux and spatial pattern) can be used to identify predominantly volcanically and/or tectonically influenced compartments. Major gas emissions indicate significant fluid circulation at depth, which is typical for magmatic systems. Such high gas emissions have been observed in areas affected by major tectonic structures interacting with magmatic bodies at depth (tectono‐volcanic). Predominantly fault‐controlled sectors also show hydrothermal fluid circulation, but to a lower extent compared to tectono‐volcanic sectors. Within the Aluto volcanic complex geothermal production wells mainly target such fault‐controlled domains, whereas results of the study indicate strongest fluid circulation in tectono‐volcanic sectors. This result should be considered for the future exploration and development strategy of the site.
Close

Details

Original languageEnglish
Number of pages16
JournalGeochemistry, Geophysics, Geosystems
VolumeEarly View
Early online date21 Aug 2019
DOIs
Publication statusE-pub ahead of print - 21 Aug 2019

    Research areas

  • East African Rift System, Carbon dioxide, Radon, Soil gas fingerprint, Tectonic, Volcanic

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth

    Hutchison, W., Babiel, R., Finch, A. A., Marks, M., Markl, G., Boyce, A. J., Stüeken, E. E., Friis, H., Borst, A. M. & Horsburgh, N. J., 16 Sep 2019, In : Nature Communications. 10, 12 p., 4208.

    Research output: Contribution to journalArticle

  2. Fluidal pyroclasts reveal the intensity of peralkaline rhyolite pumice cone eruptions

    Clarke, B., Calder, E. S., Dessalegn, F., Fontijn, K., Cortés, J. A., Naylor, M., Butler, I., Hutchison, W. & Yirgu, G., 1 May 2019, In : Nature Communications. 10, 10 p.

    Research output: Contribution to journalArticle

  3. From Mantle to Motzfeldt: a genetic model for syenite-hosted Ta,Nb-mineralisation

    Finch, A. A., McCreath, J. A., Reekie, C. D. J., Hutchison, W., Ismaila, A., Armour-Brown, A., Andersen, T. & Simonsen, S. L., Apr 2019, In : Ore Geology Reviews. 107, p. 402-416 15 p.

    Research output: Contribution to journalArticle

  4. Mixing and crystal scavenging in the Main Ethiopian Rift revealed by trace element systematics in feldspars and glasses

    Iddon, F., Jackson, C., Hutchison, W., Fontijn, K., Pyle, D. M., Mather, T. A., Yirgu, G. & Edmonds, M., 11 Jan 2019, In : Geochemistry, Geophysics, Geosystems. Early View, 30 p.

    Research output: Contribution to journalArticle

  5. The evolution of magma during continental rifting: new constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    Hutchison, W., Mather, T. A., Pyle, D. M., Boyce, A. J., Gleeson, M. L. M., Yirgu, G., Blundy, J. D., Ferguson, D. J., Vye-Brown, C., Millar, I. L., Sims, K. W. W. & Finch, A. A., 1 May 2018, In : Earth and Planetary Science Letters. 489, p. 203-218 16 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Geochemistry, Geophysics, Geosystems (Journal)

    Nora Nell Hanson (Reviewer)
    2014

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Generation of Earth's early continents from a relatively cool Archean mantle

    Piccolo, A., Palin, R. M., Kaus, B. J. P. & White, R. W., 1 Apr 2019, In : Geochemistry, Geophysics, Geosystems. 20, 4, p. 1679-1697

    Research output: Contribution to journalArticle

  2. Mixing and crystal scavenging in the Main Ethiopian Rift revealed by trace element systematics in feldspars and glasses

    Iddon, F., Jackson, C., Hutchison, W., Fontijn, K., Pyle, D. M., Mather, T. A., Yirgu, G. & Edmonds, M., 11 Jan 2019, In : Geochemistry, Geophysics, Geosystems. Early View, 30 p.

    Research output: Contribution to journalArticle

  3. Evolving mantle sources in postcollisional early Permian-Triassic magmatic rocks in the heart of of Tianshan Orogen (western China)

    Tang, G-J., Cawood, P. A., Wyman, D. A., Wang, Q. & Zhao, Z-H., Nov 2017, In : Geochemistry, Geophysics, Geosystems. 18, 11, p. 4110-4122 13 p.

    Research output: Contribution to journalArticle

  4. Causes of unrest at silicic calderas in the East African Rift: new constraints from InSAR and soil-gas chemistry at Aluto volcano, Ethiopia

    Hutchison, W., Biggs, J., Mather, T. A., Pyle, D. M., Lewi, E., Yirgu, G., Caliro, S., Chiodini, G., Clor, L. E. & Fischer, T. P., Aug 2016, In : Geochemistry, Geophysics, Geosystems. 17, 8, p. 3008-3030

    Research output: Contribution to journalArticle

ID: 260485046