Skip to content

Research at St Andrews

Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process

Research output: Contribution to journalArticle


Open Access Status

  • Embargoed (until 22/11/19)


Dafu Ru, Yongshuai Sun, Donglei Wang, Yang Chen, Tianjing Wang, Quanjun Hu, Richard J Abbott, Jianquan Liu

School/Research organisations


An increasing number of species are thought to have originated by homoploid hybrid speciation (HHS), but in only a handful of cases are details of the process known. A previous study indicated that Picea purpurea, a conifer in the Qinghai–Tibet Plateau (QTP), originated through HHS from P. likiangensis and P. wilsonii. To investigate this origin in more detail, we analysed transcriptome data for 114 individuals collected from 34 populations of the three Picea species from their core distributions in the QTP. Phylogenetic, principal component and admixture analyses of nuclear SNPs showed the species to be delimited genetically and that P. purpurea was admixed with approximately 60% of its ancestry derived from P. wilsonii and 40% from P. likiangensis. Coalescent simulations revealed the best‐fitting model of origin involved formation of an intermediate hybrid lineage between P. likiangensis and P. wilsonii approximately 6 million years ago (mya), which backcrossed to P. wilsonii to form P. purpurea approximately one mya. The intermediate hybrid lineage no longer exists and is referred to as a “ghost” lineage. Our study emphasizes the power of population genomic analysis combined with coalescent analysis for reconstructing the stages involved in the origin of a homoploid hybrid species over an extended period. In contrast to other studies, we show that these stages can in some instances span a relatively long period of evolutionary time.


Original languageEnglish
Pages (from-to)4875-4887
Number of pages13
JournalMolecular Ecology
Issue number23
Early online date22 Nov 2018
Publication statusPublished - Dec 2018

    Research areas

  • Coalescent analysis, Homoploid hybrid speciation, Hybridization, Picea, Population genomics, Qinghai-Tibet Plateau

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Genetic diversity hotspots and refugia identified by mapping multi-plant species haplotype diversity in China

    Deng, T., Abbott, R. J., Li, W., Sun, H. & Volis, S., 27 Aug 2019, In : Israel Journal of Plant Sciences. 66, 3-4, p. 136-151 16 p.

    Research output: Contribution to journalArticle

  2. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex

    Ma, Y., Wang, J., Hu, Q., Li, J., Sun, Y., Zhang, L., Abbott, R. J., Liu, J. & Mao, K., 18 Jun 2019, In : Communications Biology. 2, 12 p., 213.

    Research output: Contribution to journalArticle

  3. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling–Daba Mountains, a major glacial refugium in Central China

    Xu, X-X., Cheng, F-Y., Peng, L-P., Sun, Y-Q., Hu, X-G., Li, S-Y., Xian, H-L., Jia, K-H., Abbott, R. J. & Mao, J-F., 17 Jun 2019, In : Ecology and Evolution. Early View, 21 p.

    Research output: Contribution to journalArticle

  4. Divergence and reproductive isolation between two closely related allopatric Iris species

    Volis, S., Zhang, Y-H., Deng, T., Dorman, M., Blecher, M. & Abbott, R. J., Jun 2019, In : Biological Journal of the Linnean Society. 127, 2, p. 377-389 13 p.

    Research output: Contribution to journalArticle

  5. A mixing-isolation-mixing model of speciation can potentially explain hotspots of species diversity

    Abbott, R. J., Mar 2019, In : National Science Review. 6, 2, p. 290-291 2 p.

    Research output: Contribution to journalComment/debate

Related by journal

  1. Molecular Ecology (Journal)

    Richard John Abbott (Editor)

    Activity: Publication peer-review and editorial work typesEditor of research journal

  2. Molecular Ecology (Journal)

    Michael Gordon Ritchie (Editor)

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Oceanographic barriers, divergence, and admixture: phylogeography and taxonomy of two putative subspecies of short-finned pilot whale

    Van Cise, A. M., Baird, R. W., Baker, C. S., Cerchio, S., Claridge, D., Fielding, R., Hancock-Hanser, B., Marrero, J., Martien, K. K., Mignucci-Giannoni, A. A., Oleson, E. M., Oremus, M., Poole, M. M., Rosel, P. E., Taylor, B. L. & Morin, P. A., 2 Jun 2019, In : Molecular Ecology. Early View

    Research output: Contribution to journalArticle

  2. Demographic expansion and genetic load of the halophyte model plant Eutrema salsugineum

    Wang, X-J., Hu, Q-J., Guo, X-Y., Wang, K., Ru, D-F., German, D. A., Weretilnyk, E. A., Abbott, R. J., Lascoux, M. & Liu, J-Q., Jul 2018, In : Molecular Ecology. 27, 14, p. 2943-2955

    Research output: Contribution to journalArticle

  3. Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes

    Moran, P., Pascoal, S., Cezard, T., Risse, J., Ritchie, M. G. & Bailey, N. W., 10 Jun 2018, In : Molecular Ecology. Early view

    Research output: Contribution to journalArticle

  4. These aren’t the loci you’re looking for: principles of effective SNP filtering for molecular ecologists

    O'Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M. & Portnoy, D. S., Aug 2018, In : Molecular Ecology. 27, 16, p. 3193-3206 14 p.

    Research output: Contribution to journalArticle

ID: 256346727