Skip to content

Research at St Andrews

Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments

Research output: Contribution to journalArticlepeer-review

Open Access Status

  • Embargoed (until 30/04/21)


Matthew R. Warke, Harald Strauss, Stefan Schröder

School/Research organisations


The Paleoproterozoic Koegas Subgroup (Transvaal Supergroup, South Africa) was deposited in the immediate prelude to the Great Oxidation Event (GOE), and can therefore shed light on the oceanic paleoredox conditions just before atmospheric oxidation. Manganese enrichments of ∼16 wt% in diagenetic kutnahorite horizons suggest that Mn2+ oxidation occurred, either by free O2 or by an ancient photosystem. Iron and molybdenum isotope trends also support the existence of a Mn4+-oxide sediment flux, suggesting that the Koegas basin may have been redox stratified. Evidence from detrital and authigenic pyrite with mass-independently fractionated sulfur isotopes, however, suggests that the atmosphere was devoid of oxygen. To resolve this contradiction, this paper presents new constraints on pathways of Mn2+ oxidation from field, petrographic, stable isotope, and rare earth element and yttrium (REYSN) analysis of stromatolitic carbonates from the upper Koegas Subgroup. Ferroan dolostones and limestones preserve marine REYSN arrays with positive CeSN anomalies. These differences are explained by a redox stratified basin, whereby Mn2+ and Ce3+ are oxidized at a redoxcline and Ce is adsorped onto sinking Mn-oxide particles. Mn-oxide particles and a negative Ce anomaly from the oxidized upper water column are transferred into carbonates accumulating above the redoxcline. Diagenetic fluids later reduce the Mn-oxides to kutnahorite. Below the redoxcline, reduction of Mn-oxides particles enriches carbonates in Mn and a positive Ce anomaly. This contribution adds evidence for development of oxygen oases and redox-stratified basins before the GOE. Redox stratification was best developed during transgressions. During regressions, a deltaic system prograded into the Koegas Basin. High sedimentation rates likely allowed for preservation of detrital pyrite only in the deltaic sandstones, thus explaining the contradictory geochemical evidence. No previously unknown ancient photosystem of Mn oxidation is required to explain Mn oxidation.


Original languageEnglish
Article number105767
JournalPrecambrian Research
VolumeIn press
Early online date30 Apr 2020
Publication statusE-pub ahead of print - 30 Apr 2020

    Research areas

  • Koegas, Transvaal, Great Oxidation Event, Rare Earth Elements, Cerium

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Sedimentology and isotope geochemistry of transitional evaporitic environments within arid continental settings: from erg to saline lakes

    Pettigrew, R. P., Priddy, C., Clarke, S. M., Warke, M. R., Stüeken, E. E. & Claire, M. W., 20 Dec 2020, In: Sedimentology. Early View

    Research output: Contribution to journalArticlepeer-review

  2. The Great Oxidation Event preceded a Paleoproterozoic "snowball Earth"

    Warke, M. R., Di Rocco, T., Zerkle, A. L., Lepland, A., Prave, T., Martin, A., Ueno, Y., Condon, D. & Claire, M., 16 Jun 2020, In: Proceedings of the National Academy of Sciences of the United States of America. 117, 24, p. 13314-13320 7 p.

    Research output: Contribution to journalArticlepeer-review

  3. Billions of years ago, the rise of oxygen in Earth’s atmosphere caused a worldwide deep freeze

    Warke, M., 2 Jun 2020, The Conversation.

    Research output: Contribution to specialist publicationArticle

  4. Decimeter-scale mapping of carbonate-controlled trace element distribution in Neoarchean cuspate stromatolites

    Warke, M. R., Edwards, N. P., Wogelius, R. A., Manning, P. L., Bergmann, U., Egerton, V. M., Kimball, K. C., Garwood, R. J., Beukes, N. J. & Schröder, S., 15 Sep 2019, In: Geochimica et Cosmochimica Acta. 261

    Research output: Contribution to journalArticlepeer-review

  5. Testing models of pre-GOE environmental oxidation: a Paleoproterozoic marine signal in platform dolomites of the Tongwane Formation (South Africa)

    Warke, M. R., Schröder, S. & Strauss, H., Aug 2018, In: Precambrian Research. 313, p. 205-220 16 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. The Mesoarchaean Akia terrane, West Greenland, revisited: new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    Steenfelt, A., Hollis, J., Kirkland, C. L., Sandrin, A., Gardiner, N. J., K. H. Olierook, H., Szilas, K., Waterton, P. & Yakymchuk, C., Jan 2021, In: Precambrian Research. In press, 105958.

    Research output: Contribution to journalArticlepeer-review

  2. Using zircon in mafic migmatites to disentangle complex high-grade gneiss terrains – Terrane spotting in the Lewisian complex, NW Scotland

    Fischer, S., Prave, A., Johnson, T., Cawood, P. A., Hawkesworth, C., Horstwood, M. & EIMF, Apr 2021, In: Precambrian Research. 355, 106074.

    Research output: Contribution to journalArticlepeer-review

  3. A marine origin for the late Mesoproterozoic Copper Harbor and Nonesuch Formations of the Midcontinent Rift of Laurentia

    Jones, S. M., Prave, A. R., Raub, T. D., Cloutier, J., Stüeken, E. E., Rose, C. V., Linnekogel, S. & Nazarov, K., Jan 2020, In: Precambrian Research. 336, 105510.

    Research output: Contribution to journalArticlepeer-review

  4. Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland

    Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gardiner, N. J. & Szilas, K., Apr 2020, In: Precambrian Research. 339, 105615.

    Research output: Contribution to journalArticlepeer-review

  5. Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia

    Kreitsmann, T., Lepland, A., Bau, M., Prave, A., Paiste, K., Mänd, K., Sepp, H., Martma, T., Romashkin, A. E. & Kirsimäe, K., Sep 2020, In: Precambrian Research. 347, 16 p., 105855.

    Research output: Contribution to journalArticlepeer-review

ID: 267685569