Skip to content

Research at St Andrews

Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments

Research output: Contribution to journalArticlepeer-review

Standard

Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments. / Warke, Matthew R.; Strauss, Harald; Schröder, Stefan.

In: Precambrian Research, Vol. In press, 105767, 30.04.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Warke, MR, Strauss, H & Schröder, S 2020, 'Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments', Precambrian Research, vol. In press, 105767. https://doi.org/10.1016/j.precamres.2020.105767

APA

Warke, M. R., Strauss, H., & Schröder, S. (2020). Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments. Precambrian Research, In press, [105767]. https://doi.org/10.1016/j.precamres.2020.105767

Vancouver

Warke MR, Strauss H, Schröder S. Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments. Precambrian Research. 2020 Apr 30;In press. 105767. https://doi.org/10.1016/j.precamres.2020.105767

Author

Warke, Matthew R. ; Strauss, Harald ; Schröder, Stefan. / Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments. In: Precambrian Research. 2020 ; Vol. In press.

Bibtex - Download

@article{d5c95d6b6c894deeadb571b7e4eb82e1,
title = "Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments",
abstract = "The Paleoproterozoic Koegas Subgroup (Transvaal Supergroup, South Africa) was deposited in the immediate prelude to the Great Oxidation Event (GOE), and can therefore shed light on the oceanic paleoredox conditions just before atmospheric oxidation. Manganese enrichments of ∼16 wt% in diagenetic kutnahorite horizons suggest that Mn2+ oxidation occurred, either by free O2 or by an ancient photosystem. Iron and molybdenum isotope trends also support the existence of a Mn4+-oxide sediment flux, suggesting that the Koegas basin may have been redox stratified. Evidence from detrital and authigenic pyrite with mass-independently fractionated sulfur isotopes, however, suggests that the atmosphere was devoid of oxygen. To resolve this contradiction, this paper presents new constraints on pathways of Mn2+ oxidation from field, petrographic, stable isotope, and rare earth element and yttrium (REYSN) analysis of stromatolitic carbonates from the upper Koegas Subgroup. Ferroan dolostones and limestones preserve marine REYSN arrays with positive CeSN anomalies. These differences are explained by a redox stratified basin, whereby Mn2+ and Ce3+ are oxidized at a redoxcline and Ce is adsorped onto sinking Mn-oxide particles. Mn-oxide particles and a negative Ce anomaly from the oxidized upper water column are transferred into carbonates accumulating above the redoxcline. Diagenetic fluids later reduce the Mn-oxides to kutnahorite. Below the redoxcline, reduction of Mn-oxides particles enriches carbonates in Mn and a positive Ce anomaly. This contribution adds evidence for development of oxygen oases and redox-stratified basins before the GOE. Redox stratification was best developed during transgressions. During regressions, a deltaic system prograded into the Koegas Basin. High sedimentation rates likely allowed for preservation of detrital pyrite only in the deltaic sandstones, thus explaining the contradictory geochemical evidence. No previously unknown ancient photosystem of Mn oxidation is required to explain Mn oxidation.",
keywords = "Koegas, Transvaal, Great Oxidation Event, Rare Earth Elements, Cerium",
author = "Warke, {Matthew R.} and Harald Strauss and Stefan Schr{\"o}der",
note = "MRW was supported by a NERC-studentship through the University of Manchester (NEL501591/1) and by the REI Fund of the Geological Society of South Africa. SS was supported through a Strategy Grant of the Faculty of Engineering and Physical Sciences at the University of Manchester. ",
year = "2020",
month = apr,
day = "30",
doi = "10.1016/j.precamres.2020.105767",
language = "English",
volume = "In press",
journal = "Precambrian Research",
issn = "0301-9268",
publisher = "Elsevier Science BV",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments

AU - Warke, Matthew R.

AU - Strauss, Harald

AU - Schröder, Stefan

N1 - MRW was supported by a NERC-studentship through the University of Manchester (NEL501591/1) and by the REI Fund of the Geological Society of South Africa. SS was supported through a Strategy Grant of the Faculty of Engineering and Physical Sciences at the University of Manchester.

PY - 2020/4/30

Y1 - 2020/4/30

N2 - The Paleoproterozoic Koegas Subgroup (Transvaal Supergroup, South Africa) was deposited in the immediate prelude to the Great Oxidation Event (GOE), and can therefore shed light on the oceanic paleoredox conditions just before atmospheric oxidation. Manganese enrichments of ∼16 wt% in diagenetic kutnahorite horizons suggest that Mn2+ oxidation occurred, either by free O2 or by an ancient photosystem. Iron and molybdenum isotope trends also support the existence of a Mn4+-oxide sediment flux, suggesting that the Koegas basin may have been redox stratified. Evidence from detrital and authigenic pyrite with mass-independently fractionated sulfur isotopes, however, suggests that the atmosphere was devoid of oxygen. To resolve this contradiction, this paper presents new constraints on pathways of Mn2+ oxidation from field, petrographic, stable isotope, and rare earth element and yttrium (REYSN) analysis of stromatolitic carbonates from the upper Koegas Subgroup. Ferroan dolostones and limestones preserve marine REYSN arrays with positive CeSN anomalies. These differences are explained by a redox stratified basin, whereby Mn2+ and Ce3+ are oxidized at a redoxcline and Ce is adsorped onto sinking Mn-oxide particles. Mn-oxide particles and a negative Ce anomaly from the oxidized upper water column are transferred into carbonates accumulating above the redoxcline. Diagenetic fluids later reduce the Mn-oxides to kutnahorite. Below the redoxcline, reduction of Mn-oxides particles enriches carbonates in Mn and a positive Ce anomaly. This contribution adds evidence for development of oxygen oases and redox-stratified basins before the GOE. Redox stratification was best developed during transgressions. During regressions, a deltaic system prograded into the Koegas Basin. High sedimentation rates likely allowed for preservation of detrital pyrite only in the deltaic sandstones, thus explaining the contradictory geochemical evidence. No previously unknown ancient photosystem of Mn oxidation is required to explain Mn oxidation.

AB - The Paleoproterozoic Koegas Subgroup (Transvaal Supergroup, South Africa) was deposited in the immediate prelude to the Great Oxidation Event (GOE), and can therefore shed light on the oceanic paleoredox conditions just before atmospheric oxidation. Manganese enrichments of ∼16 wt% in diagenetic kutnahorite horizons suggest that Mn2+ oxidation occurred, either by free O2 or by an ancient photosystem. Iron and molybdenum isotope trends also support the existence of a Mn4+-oxide sediment flux, suggesting that the Koegas basin may have been redox stratified. Evidence from detrital and authigenic pyrite with mass-independently fractionated sulfur isotopes, however, suggests that the atmosphere was devoid of oxygen. To resolve this contradiction, this paper presents new constraints on pathways of Mn2+ oxidation from field, petrographic, stable isotope, and rare earth element and yttrium (REYSN) analysis of stromatolitic carbonates from the upper Koegas Subgroup. Ferroan dolostones and limestones preserve marine REYSN arrays with positive CeSN anomalies. These differences are explained by a redox stratified basin, whereby Mn2+ and Ce3+ are oxidized at a redoxcline and Ce is adsorped onto sinking Mn-oxide particles. Mn-oxide particles and a negative Ce anomaly from the oxidized upper water column are transferred into carbonates accumulating above the redoxcline. Diagenetic fluids later reduce the Mn-oxides to kutnahorite. Below the redoxcline, reduction of Mn-oxides particles enriches carbonates in Mn and a positive Ce anomaly. This contribution adds evidence for development of oxygen oases and redox-stratified basins before the GOE. Redox stratification was best developed during transgressions. During regressions, a deltaic system prograded into the Koegas Basin. High sedimentation rates likely allowed for preservation of detrital pyrite only in the deltaic sandstones, thus explaining the contradictory geochemical evidence. No previously unknown ancient photosystem of Mn oxidation is required to explain Mn oxidation.

KW - Koegas

KW - Transvaal

KW - Great Oxidation Event

KW - Rare Earth Elements

KW - Cerium

U2 - 10.1016/j.precamres.2020.105767

DO - 10.1016/j.precamres.2020.105767

M3 - Article

VL - In press

JO - Precambrian Research

JF - Precambrian Research

SN - 0301-9268

M1 - 105767

ER -

Related by author

  1. A lack of oxygen will wipe out life on Earth in a billion years

    Warke, M. R., 2 Mar 2021, The Conversation.

    Research output: Contribution to specialist publicationArticle

  2. Sedimentology and isotope geochemistry of transitional evaporitic environments within arid continental settings: from erg to saline lakes

    Pettigrew, R. P., Priddy, C., Clarke, S. M., Warke, M. R., Stüeken, E. E. & Claire, M. W., 20 Dec 2020, In: Sedimentology. Early View

    Research output: Contribution to journalArticlepeer-review

  3. The Great Oxidation Event preceded a Paleoproterozoic "snowball Earth"

    Warke, M. R., Di Rocco, T., Zerkle, A. L., Lepland, A., Prave, T., Martin, A., Ueno, Y., Condon, D. & Claire, M., 16 Jun 2020, In: Proceedings of the National Academy of Sciences of the United States of America. 117, 24, p. 13314-13320 7 p.

    Research output: Contribution to journalArticlepeer-review

  4. Billions of years ago, the rise of oxygen in Earth’s atmosphere caused a worldwide deep freeze

    Warke, M., 2 Jun 2020, The Conversation.

    Research output: Contribution to specialist publicationArticle

  5. Decimeter-scale mapping of carbonate-controlled trace element distribution in Neoarchean cuspate stromatolites

    Warke, M. R., Edwards, N. P., Wogelius, R. A., Manning, P. L., Bergmann, U., Egerton, V. M., Kimball, K. C., Garwood, R. J., Beukes, N. J. & Schröder, S., 15 Sep 2019, In: Geochimica et Cosmochimica Acta. 261

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. The Mesoarchaean Akia terrane, West Greenland, revisited: new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    Steenfelt, A., Hollis, J., Kirkland, C. L., Sandrin, A., Gardiner, N. J., K. H. Olierook, H., Szilas, K., Waterton, P. & Yakymchuk, C., Jan 2021, In: Precambrian Research. In press, 105958.

    Research output: Contribution to journalArticlepeer-review

  2. Using zircon in mafic migmatites to disentangle complex high-grade gneiss terrains – Terrane spotting in the Lewisian complex, NW Scotland

    Fischer, S., Prave, A., Johnson, T., Cawood, P. A., Hawkesworth, C., Horstwood, M. & EIMF, Apr 2021, In: Precambrian Research. 355, 106074.

    Research output: Contribution to journalArticlepeer-review

  3. A marine origin for the late Mesoproterozoic Copper Harbor and Nonesuch Formations of the Midcontinent Rift of Laurentia

    Jones, S. M., Prave, A. R., Raub, T. D., Cloutier, J., Stüeken, E. E., Rose, C. V., Linnekogel, S. & Nazarov, K., Jan 2020, In: Precambrian Research. 336, 105510.

    Research output: Contribution to journalArticlepeer-review

  4. Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland

    Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gardiner, N. J. & Szilas, K., Apr 2020, In: Precambrian Research. 339, 105615.

    Research output: Contribution to journalArticlepeer-review

  5. Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia

    Kreitsmann, T., Lepland, A., Bau, M., Prave, A., Paiste, K., Mänd, K., Sepp, H., Martma, T., Romashkin, A. E. & Kirsimäe, K., Sep 2020, In: Precambrian Research. 347, 16 p., 105855.

    Research output: Contribution to journalArticlepeer-review

ID: 267685569

Top