Skip to content

Research at St Andrews

Predicting the optimal group size from predator hunting behaviour

Research output: Contribution to journalArticle

Abstract

1. How group size affects predator attack and success rate, and so prey vulnerability, is important in determining the nonlethal consequences of predation risk on animal populations and communities. Theory predicts that both predator attack success rate and the dilution effect decline exponentially with group size and that selection generates optimal group sizes at a 'risk threshold' above which antipredation benefits are outweighed by costs, such as those owing to higher attack rates.

2. We examined whether flock size risk thresholds for attack rate, success rate or dilution differed, and therefore whether the strength of selection for group size differed for these three factors, using a system of redshank Tringa totanus flocks being hunted by Eurasian sparrowhawks Accipiter nisus. We also asked which of the three thresholds, on their own or in combination, predicted the most commonly observed group size.

3. Mean redshank flock size increased with a very gradual quadratic function (i.e. approximately linearly) with population size, although at a rate half that possible; when population size was not limiting, individuals almost always avoided flocks of less than 30 and birds were frequently in flocks up to at least 80. Sparrowhawk attack rate showed a quadratic relationship with flock size and peaked at 55 redshanks. Sparrowhawk attack success rate, however, declined exponentially, becoming less steep at flock sizes of about 40 and remaining uniformly low (a 95% decrease) by 70. Combined with dilution, individual risk of death per attack decreased by 95% when group size reached 30 (20 for the dilution effect alone).

4. Redshanks most commonly formed group sizes that gained the maximum individual predation risk reduction. They also commonly formed group sizes far above any further substantial advantages from the dilution effect or from reducing attack rate, but that continued to reduce predation risk by lowering attack success rate. Individuals did not always form the largest groups possible which we suggest is because individual variation in risk-taking subdivides the population. This places a constraint on the ability of individuals to compensate for predation risk and will have a variety of important effects on animal populations.
Close

Details

Original languageEnglish
Pages (from-to)310-319
JournalJournal of Animal Ecology
Volume80
Issue number2
DOIs
Publication statusPublished - Mar 2011

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Conservation research capacity in sub-Saharan Africa is improving, although only in a few countries

    Pototsky, C. & Cresswell, W., 9 Jan 2020, (Accepted/In press) In : Oryx.

    Research output: Contribution to journalArticle

  2. A fruit diet rather than invertebrate diet maintains a robust innate immunity in an omnivorous tropical songbird

    Nwaogu, C. J., Galema, A., Cresswell, W., Dietz, M. W. & Tieleman, B. I., 3 Jan 2020, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

  3. FragSAD: a database of diversity and species abundance distributions from habitat fragments

    Chase, J. M., Liebergesell, M., Sagouis, A., May, F., Blowes, S. A., Berg, Å., Bernard, E., Brosi, B. J., Cadotte, M. W., Cayuela, L., Chiarello, A. G., Cosson, J. F., Cresswell, W., Dami, F. D., Dauber, J., Dickman, C. R., Didham, R. K., Edwards, D. P., Farneda, F. Z., Gavish, Y. & 22 others, Gonçalves-Souza, T., Guadagnin, D. L., Henry, M., López-Baucells, A., Kappes, H., Mac Nally, R., Manu, S., Martensen, A. C., McCollin, D., Meyer, C. F. J., Neckel-Oliveira, S., Nogueira, A., Pons, J-M., Raheem, D. C., Ramos, F. N., Rocha, R., Sam, K., Slade, E., Stireman, J. O., Struebig, M. J., Vasconcelos, H. & Ziv, Y., Dec 2019, In : Ecology. 100, 12, 1 p., e02861.

    Research output: Contribution to journalArticle

  4. Weak breeding seasonality of a songbird in a seasonally arid tropical environment arises from individual flexibility and strongly seasonal moult

    Nwaogu, C. J., Tieleman, B. I. & Cresswell, W., Jul 2019, In : Ibis. 161, 3, p. 533-545 13 p.

    Research output: Contribution to journalArticle

Related by journal

  1. A fruit diet rather than invertebrate diet maintains a robust innate immunity in an omnivorous tropical songbird

    Nwaogu, C. J., Galema, A., Cresswell, W., Dietz, M. W. & Tieleman, B. I., 3 Jan 2020, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

  2. Environment-sensitive mass changes influence breeding in a capital breeding marine top predator

    Smout, S. C., King, R. & Pomeroy, P., 20 Nov 2019, In : Journal of Animal Ecology. Early View, 13 p.

    Research output: Contribution to journalArticle

  3. Optimizing the use of biologgers for movement ecology research

    Williams, H., Taylor, L., Benhamou, S., Bijleveld, A., Clay, T., de Grissac, S., Demsar, U., English, H., Franconi, N., Gómez-Laich, A., Griffiths, R., Kay, W., Morales, J. M., Potts, J., Rogerson, K., Rutz, C., Spelt, A., Trevail, A., Wilson, R. & Börger, L., 1 Oct 2019, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

  4. Seasonal differences in baseline innate immune function are better explained by environment than annual cycle stage in a year-round breeding tropical songbird

    Nwaogu, C. J., Cresswell, W., Versteegh, M. A. & Tieleman, B. I., 8 Apr 2019, In : Journal of Animal Ecology. 88, 4, p. 537-553 17 p.

    Research output: Contribution to journalArticle

  5. Sexual signal loss: the link between behaviour and rapid evolutionary dynamics in a field cricket

    Zuk, M., Bailey, N. W., Gray, B. & Rotenberry, J. T., 5 Mar 2018, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

ID: 9151074

Top