Skip to content

Research at St Andrews

Preparation and testing of metal/Ce0.80Gd0.20O1.90 (metal: Ni, Pd, Pt, Rh, Ru) co-impregnated La0.20Sr0.25Ca0.45TiO3 anode microstructures for solid oxide fuel cells

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Robert Price, Mark Cassidy, Jan G. Grolig, Andreas Mai, John T. S. Irvine

School/Research organisations

Abstract

La0.20Sr0.25Ca0.45TiO3 (LSCTA-) is a novel mixed ionic and electronic conductor (MIEC) material which can act as a potential replacement Solid Oxide Fuel Cell (SOFC) anode ‘backbone’ microstructure, for the current state-of-the-art Ni-based cermet. By impregnating this ‘backbone’ with electrocatalytically active coatings of metal oxides and metallic particles, it is possible to create high performance SOFC anodes which offer improved redox stability and tolerance to non-optimal fuel gases. Here, we present short-term test data for SOFC containing LSCTA- anode ‘backbones’ impregnated with a variety of catalyst systems including: Ni/CGO, Pd/CGO, Pt/CGO, Rh/CGO and Ru/CGO. Electrolyte-supported SOFC containing Ni/CGO impregnated anodes showed large reductions in Area Specific Resistance (ASR), in comparison to previous generation research (0.55 Ω cm2 versus 1.2 Ω cm2, respectively). Exchange of the Ni component, for Pd and Rh, led to much lower ASR of 0.39 Ω cm2 and 0.41 Ω cm2 (in 97% H2:3% H2O, at 900°C and 0.8 V), respectively. Equivalent circuit fitting of AC impedance spectra revealed the absence of an anode charge transfer process for the Rh/CGO catalyst system above 875°C, in comparison to all other systems, identifying this system as a potential replacement for the Ni-based cermet.
Close

Details

Original languageEnglish
Pages (from-to)F343-F349
JournalJournal of The Electrochemical Society
Volume166
Issue number4
DOIs
Publication statusPublished - 12 Mar 2019

    Research areas

  • Energy conversion, Fuell cells - solid oxide, High temperature materials, Co-impregnation, Solid oxide fuel cells, Strontium titanate

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  3. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  4. Nanostructured carbons containing FeNi/NiFe2O4 supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions

    Aziz, I., Lee, J. G., Duran, H., Kirchhoff, K., Baker, R. T., Irvine, J. T. S. & Arshad, S. N., 11 Nov 2019, In : RSC Advances. 9, 63, p. 36586-36599 14 p.

    Research output: Contribution to journalArticle

  5. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

Related by journal

  1. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In : Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticle

  2. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S., 14 Nov 2018, In : Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticle

  3. Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal battery

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R., Connor, P. A. & Irvine, J. T. S., 25 Jul 2017, In : Journal of The Electrochemical Society. 164, 9, p. A2159-A2163

    Research output: Contribution to journalArticle

ID: 258222222

Top