Skip to content

Research at St Andrews

Preparation via a solution method of La0.2Sr0.25Ca0.45TiO3 and its characterization for anode supported solid oxide fuel cells

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Azra Yaqub, Cristian Daniel Savaniu, Naveed K Janjua, John Thomas Sirr Irvine

School/Research organisations

Abstract

La0.2Sr0.25Ca0.45TiO3 is a carefully selected composition to provide optimal ceramic and electrical characteristics for use as an anode support in solid oxide fuel cells. In this study we focus on the process optimization and characterization of A-site deficient perovskite, La0.2Sr0.25Ca0.45TiO3 (LSCTA-), powders prepared via a solution method to be integrated into the SOFC anode supports. A Pechini method has been applied to successfully produce single phase perovskite at 900 °C. Processing conditions have been modified to yield a powder that displays a similar sintering profile to commercial yttria stabilised zirconia. The conductivity behavior of porous bodies under redox has been investigated showing a 2 stage process in both oxidation and reduction cycling that exhibits strong reversibility. For the reduction process, addition of impregnated ceria reduces the onset delay period and increases the apparent rate constant, k values, by 30–50% for both stages. The addition of ceria had less influence on the oxidation kinetics, although the conductivity values of both oxidised and reduced porous bodies were enhanced.

Graphical abstract: Preparation via a solution method of La0.2Sr0.25Ca0.45TiO3 and its characterization for anode supported solid oxide fuel cells

Close

Details

Original languageEnglish
Pages (from-to)14189-14197
JournalJournal of Materials Chemistry A
Volume1
Issue number45
Early online date27 Sep 2013
DOIs
Publication statusPublished - 7 Dec 2013

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 31 Aug 2020, In : Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticle

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 28 Sep 2020, In : Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticle

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In : Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticle

  5. Pd and GDC Co-infiltrated LSCM cathode for high-temperature CO2 electrolysis using solid oxide electrolysis cells

    Lee, S., Woo, S. H., Shin, T. H. & Irvine, J. T. S., 13 Nov 2020, In : Chemical Engineering Journal. In press, 127706.

    Research output: Contribution to journalArticle

Related by journal

  1. Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative: spin-orbit coupling: versus lattice strain

    Chatterjee, S., Payne, J., Irvine, J. T. S. & Pal, A. J., 28 Feb 2020, In : Journal of Materials Chemistry A. 8, 8, p. 4416-4427 12 p.

    Research output: Contribution to journalArticle

  2. Boosting CO2 electrolysis performance: via calcium-oxide-looping combined with in situ exsolved Ni-Fe nanoparticles in a symmetrical solid oxide electrolysis cell

    Tian, Y., Liu, Y., Naden, A., Jia, L., Xu, M., Cui, W., Chi, B., Pu, J., Irvine, J. T. S. & Li, J., 14 Aug 2020, In : Journal of Materials Chemistry A. 8, 30, p. 14895-14899 5 p.

    Research output: Contribution to journalArticle

  3. Hiding extra-framework cations in zeolites L and Y by internal ion exchange and its effect on CO2 adsorption

    Lozinska, M. M., Miller, D. N., Brandani, S. & Wright, P. A., 23 Jan 2020, In : Journal of Materials Chemistry A. Advance Article

    Research output: Contribution to journalArticle

  4. Lithiation of V2O3(SO4)2 - a flexible insertion host

    Linnell, S. F., Payne, J. L., Pickup, D. M., Chadwick, A. V., Armstrong, A. R. & Irvine, J. T. S., 7 Oct 2020, In : Journal of Materials Chemistry A. 8, 37, p. 19502-19512 11 p.

    Research output: Contribution to journalArticle

  5. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

ID: 74596287

Top