Skip to content

Research at St Andrews

Proton conductivity of Al(H2PO4)3 -H3PO4 composites at intermediate temperature

Research output: Contribution to journalArticle

Author(s)

Xiaoxiang Xu, Shanwen Tao, John Thomas Sirr Irvine

School/Research organisations

Abstract

Composites of Al(H2PO4)(3) and H3PO4 were synthesised by soft chemical methods with different Al/P ratios. The Al(H2PO4)(3) obtained was found to have a hexagonal symmetry with parameter a = 13.687(3)angstrom, c = 9.1328(1)angstrom. The conductivity of this material was measured by a.c. impedance spectroscopy between 100 degrees C and 200 degrees C in different atmospheres. The conductivity of pure Al(H2PO4)(3) in air is in the order 10(-6)-10(-7) S/cm between 100 and 200 degrees C. For samples containing small excess of H3PO4, much higher conductivity was observed. The impedance responses of the composites were found to be similar with AlH2P3O10 center dot nH(2)O under different relative humidity. The conductivity of Al(H2PO4)(3)-H3PO4 composite with Al/P = 1/3.5 reached 6.6 mS/cm at 200 degrees C in wet 5% H-2. The extra acid is found to play a key role in enhancing the conductivity of Al(H2PO4)(3)-H3PO4 composite at the surface region of the Al(H2PO4)(3) in a core shell type behaviour. 0.7% excess of H3PO4 can increase the conductivity by three orders of magnitude. These composites might be alternative electrolytes for intermediate temperature fuel cells and other electrochemical devices. Conductivity (9.5 mS/cm) changed little, when the sample was held at 175 degrees C for over 100 h as the conductivity stabilised. (C) 2008 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)343-350
Number of pages8
JournalSolid State Ionics
Volume180
Issue number4-5
DOIs
Publication statusPublished - 27 Apr 2009

    Research areas

  • Proton conductivity, PHOSPHATES, ACID FUEL-CELL, WATER-VAPOR, A.c. impedance spectroscopy, PERFORMANCE, Al(H2PO4)(3), POLYMER ELECTROLYTE MEMBRANE, OPERATION, POLYBENZIMIDAZOLE, STABILITY, CONDUCTORS, Phosphoric acid, SOLID ACIDS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide

    Kim, E. J., Ma, L. A., Duda, L. C., Pickup, D. M., Chadwick, A. V., Younesi, R., Irvine, J. T. S. & Armstrong, R., 6 Jan 2020, In : ACS Applied Energy Materials. Early View

    Research output: Contribution to journalArticle

  3. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  4. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  5. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In : Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticle

  2. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In : Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  3. Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3

    Hui, J., Neagu, D., Miller, D. N., Yue, X., Ni, C. & Irvine, J. T. S., Feb 2018, In : Solid State Ionics. 315, p. 126-130 5 p.

    Research output: Contribution to journalArticle

  4. Wet chemical synthesis and characterisation of Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3 − δ proton conductor

    Naeem Khan, M., Savaniu, C. D., Azad, A. K., Hing, P. & Irvine, J. T. S., May 2017, In : Solid State Ionics. 303, p. 52-57 6 p.

    Research output: Contribution to journalArticle

  5. Flux investigations on composite (La0.8Sr0.2)0.95Cr0.5Fe0.5O3 − δ–Sc0.198Ce0.012Zr0.789O1.90 oxygen transport membranes

    Dehaney-Steven, Z. A., Papargyriou, D. & Irvine, J. T. S., May 2016, In : Solid State Ionics. 288, p. 338-341 4 p.

    Research output: Contribution to journalArticle

ID: 47286026

Top