Skip to content

Research at St Andrews

Proton conductivity of Al(H2PO4)3 -H3PO4 composites at intermediate temperature

Research output: Contribution to journalArticlepeer-review

Author(s)

Xiaoxiang Xu, Shanwen Tao, John Thomas Sirr Irvine

School/Research organisations

Abstract

Composites of Al(H2PO4)(3) and H3PO4 were synthesised by soft chemical methods with different Al/P ratios. The Al(H2PO4)(3) obtained was found to have a hexagonal symmetry with parameter a = 13.687(3)angstrom, c = 9.1328(1)angstrom. The conductivity of this material was measured by a.c. impedance spectroscopy between 100 degrees C and 200 degrees C in different atmospheres. The conductivity of pure Al(H2PO4)(3) in air is in the order 10(-6)-10(-7) S/cm between 100 and 200 degrees C. For samples containing small excess of H3PO4, much higher conductivity was observed. The impedance responses of the composites were found to be similar with AlH2P3O10 center dot nH(2)O under different relative humidity. The conductivity of Al(H2PO4)(3)-H3PO4 composite with Al/P = 1/3.5 reached 6.6 mS/cm at 200 degrees C in wet 5% H-2. The extra acid is found to play a key role in enhancing the conductivity of Al(H2PO4)(3)-H3PO4 composite at the surface region of the Al(H2PO4)(3) in a core shell type behaviour. 0.7% excess of H3PO4 can increase the conductivity by three orders of magnitude. These composites might be alternative electrolytes for intermediate temperature fuel cells and other electrochemical devices. Conductivity (9.5 mS/cm) changed little, when the sample was held at 175 degrees C for over 100 h as the conductivity stabilised. (C) 2008 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)343-350
Number of pages8
JournalSolid State Ionics
Volume180
Issue number4-5
DOIs
Publication statusPublished - 27 Apr 2009

    Research areas

  • Proton conductivity, PHOSPHATES, ACID FUEL-CELL, WATER-VAPOR, A.c. impedance spectroscopy, PERFORMANCE, Al(H2PO4)(3), POLYMER ELECTROLYTE MEMBRANE, OPERATION, POLYBENZIMIDAZOLE, STABILITY, CONDUCTORS, Phosphoric acid, SOLID ACIDS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Enhancing electrochemical CO2 reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells

    Lee, S., Kim, M., Lee, K. T., Irvine, J. T. S. & Shin, T. H., 12 May 2021, In: Advanced Energy Materials. Early View, 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

    Price, R., Weissen, U., Grolig, J. G., Cassidy, M., Mai, A. & Irvine, J. T. S., 8 Apr 2021, In: Journal of Materials Chemistry A. 15 p.

    Research output: Contribution to journalArticlepeer-review

  3. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  5. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 47286026

Top