Skip to content

Research at St Andrews

Quantifying the impact of inter-site heterogeneity on the distribution of ChIP-seq data

Research output: Contribution to journalArticle

DOI

Author(s)

Jonathan Cairns, Andy G. Lynch, Simon Tavaré

School/Research organisations

Abstract

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) is a valuable tool for epigenetic studies. Analysis of the data arising from ChIP-seq experiments often requires implicit or explicit statistical modeling of the read counts. The simple Poisson model is attractive, but does not provide a good fit to observed ChIP-seq data. Researchers therefore often either extend to a more general model (e.g., the Negative Binomial), and/or exclude regions of the genome that do not conform to the model. Since many modeling strategies employed for ChIP-seq data reduce to fitting a mixture of Poisson distributions, we explore the problem of inferring the optimal mixing distribution. We apply the Constrained Newton Method (CNM), which suggests the Negative Binomial - Negative Binomial (NB-NB) mixture model as a candidate for modeling ChIP-seq data. We illustrate fitting the NB-NB model with an accelerated EM algorithm on four data sets from three species. Zero-inflated models have been suggested as an approach to improve model fit for ChIP-seq data. We show that the NB-NB mixture model requires no zero-inflation and suggest that in some cases the need for zero inflation is driven by the model's inability to cope with both artifactual large read counts and the frequently observed very low read counts. We see that the CNM-based approach is a useful diagnostic for the assessment of model fit and inference in ChIP-seq data and beyond. Use of the suggested NB-NB mixture model will be of value not only when calling peaks or otherwise modeling ChIP-seq data, but also when simulating data or constructing blacklists de novo.

Close

Details

Original languageEnglish
Article numberArticle 399
JournalFrontiers in Genetics
Volume5
Issue numberNOV
DOIs
Publication statusPublished - 2014

    Research areas

  • ChIP-seq, High-throughput sequencing, Mixture model, Negative binomial, Zero-inflation

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Deciphering the genomic, epigenomic and transcriptomic landscapes of pre-invasive lung cancer lesions

    Texeira, V. H., Pipinikas, C. P., Pennycuick, A., Lee-Six, H., Chandrasekharan, D., Beane, J., Morris, T. J., Karpathakis, A., Feber, A., Breeze, C. E., Ntolios, P., Hynds, R. E., Falzon, M., Capitanio, A., Carroll, B., Durrenberger, P. F., Hardavella, G., Brown, J. M., Lynch, A. G., Farmery, H. & 12 othersPaul, D. S., Chambers, R. C., McGranahan, N., Navani, N., Thakrar, R. M., Swanton, C., Beck, S., George, P. J., Spira, A., Campbell, P. J., Thirwell, C. & Janes, S. M., Mar 2019, In : Nature Medicine. 25, p. 517-525 9 p.

    Research output: Contribution to journalArticle

  2. DESNT: a poor prognosis category of human prostate cancer

    Luca, B-A., Brewer, D. S., Edwards, D. R., Edwards, S., Whitaker, H. C., Merson, S., Dennis, N., Cooper, R. A., Hazell, S., Warren, A. Y., Eeles, R., Lynch, A. G., Ross-Adams, H., Lamb, A. D., Neal, D. E., Sethia, K., Mills, R. D., Ball, R. Y., Curley, H., Clark, J. & 2 othersMoulton, V. & Cooper, C. S., Dec 2018, In : European Urology Focus. 4, 6, p. 842-850 9 p.

    Research output: Contribution to journalArticle

  3. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal

    Mitchell, T. J., Turajlic, S., Rowan, A., Nicol, D., Farmery, J. H. R., O’Brien, T., Martincorena, I., Tarpey, P., Angelopoulos, N., Yates, L. R., Butler, A. P., Raine, K., Stewart, G. D., Challacombe, B., Fernando, A., Lopez, J. I., Hazell, S., Chandra, A., Chowdhury, S., Rudman, S. & 27 othersSoultati, A., Stamp, G., Fotiadis, N., Pickering, L., Au, L., Spain, L., Lynch, J., Stares, M., Teague, J., Maura, F., Wedge, D. C., Horswell, S., Chambers, T., Litchfield, K., Xu, H., Stewart, A., Elaidi, R., Oudard, S., McGranahan, N., Csabai, I., Gore, M., Futreal, P. A., Larkin, J., Lynch, A. G., Szallasi, Z., Swanton, C. & Campbell, P. J., 19 Apr 2018, In : Cell. 173, 3, p. 611-623 13 p., e17.

    Research output: Contribution to journalArticle

  4. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets

    Wedge, D. C., Gundem, G., Mitchell, T., Woodstock, D. J., Martincorena, I., Ghori, M., Zamora, J., Butler, A., Whitaker, H., Kote-Jarai, Z., Alexandrov, L. B., Van Loo, P., Massie, C. E., Dentro, S., Warren, A. Y., Verrill, C., Berney, D. M., Dennis, N., Merson, S., Hawkins, S. & 68 othersHowat, W., Lu, Y-J., Lambert, A., Kay, J., Kremeyer, B., Karaszi, K., Camacho, N., Luxton, H., Marsden, L., Edwards, S., Matthews, L., Bo, V., Leongamornlert, D., McLaren, S., Ng, A., Yu, Y., Zhang, H., Dadaev, T., Thomas, S., Easton, D. F., Ahmed, M., Bancroft, E., Fisher, C., Livni, N., Nicol, D., Tavaré, S., Gill, P., Greenman, C., Khoo, V., Van As, N., Kumar, P., Ogden, C., Cahill, D., Thompson, A., Mayer, E., Rowe, E., Dudderidge, T., Gnanapragasam, V., Shah, N. C., Raine, K., Jones, D., Menzies, A., Stebbings, L., Teague, J., Hazell, S., Corbishley, C., CamCaP Study Group, de Bono, J., Attard, G., Isaacs, W., Visakorpi, T., Fraser, M., Boutros, P. C., Bristow, R. G., Workman, P., Sander, C., The TCGA Consortium, Hamdy, F. C., Futreal, A., McDermott, U., Al-Lazikani, B., Lynch, A., Bova, G. S., Foster, C. S., Brewer, D. S., Neal, D. E., Cooper, C. S. & Eeles, R. A., 16 Apr 2018, In : Nature Genetics. 50, p. 682-692 16 p.

    Research output: Contribution to journalArticle

  5. The role of TET-mediated DNA hydroxymethylation in prostate cancer

    Smeets, E., Lynch, A. G., Prekovic, S., Van den Broeck, T., Moris, L., Helsen, C., Joniau, S., Claessens, F. & Massie, C. E., 15 Feb 2018, In : Molecular and Cellular Endocrinology. 462, A, p. 41-55

    Research output: Contribution to journalReview article

Related by journal

  1. Genomic tools and selective breeding in molluscs

    Hollenbeck, C. M. & Johnston, I. A., 18 Jul 2018, In : Frontiers in Genetics. 9, 15 p., 253.

    Research output: Contribution to journalReview article

  2. History, chance and selection during phenotypic and genomic experimental evolution: replaying the tape of life at different levels

    Matos, M., Simões, P., Santos, M. A., Seabra, S. G., Faria, G. S., Vala, F., Santos, J. & Fragata, I., 25 Feb 2015, In : Frontiers in Genetics. 6, 71.

    Research output: Contribution to journalArticle

ID: 250731711