Skip to content

Research at St Andrews

Quantitative analysis of hydroxyapatite-binding plasma proteins in genotyped individuals with late-stage age-related macular degeneration

Research output: Contribution to journalArticle

Abstract

Age-related macular degeneration (AMD) is associated with the formation of sub-retinal pigment epithelial (RPE) deposits that block circulatory exchange with the retina. The factors that contribute to deposit formation are not well understood. Recently, we identified the presence of spherular hydroxyapatite (HAP) structures within sub-RPE deposits to which several AMD-associated proteins were bound. This suggested that protein binding to HAP represents a potential mechanism for the retention of proteins in the sub-RPE space. Here we performed quantitative proteomics using Sequential Window Acquisition of all THeoretical fragment-ion spectra-Mass Spectrometry (SWATH-MS) on plasma samples from 23 patients with late-stage neovascular AMD following HAP-binding. Individuals were genotyped for the high risk CFH variant (T1277C) and binding to HAP was compared between wild type and risk variants. From a library of 242 HAP binding plasma proteins (1% false discovery rate), SWATH-MS revealed significant quantitative differences in the abundance of 32 HAP-binding proteins (p<0.05) between the two homozygous groups. The concentrations of six proteins (FHR1, FHR3, APOC4, C4A, C4B and PZP) in the HAP eluted fractions and whole plasma were further analysed using ELISA and their presence in sections from human cadaver eyes was examined using immunofluorescence. All six proteins were found to be present in the RPE/choroid interface, and four of these (FHR1, FHR3, APOC4 and PZP) were associated with spherules in sub-RPE space. This study provides qualitative and quantitative information relating to the degree by which plasma proteins may contribute to sub-RPE deposit formation through binding to HAP spherules and how genetic differences might contribute to deposit formation.
Close

Details

Original languageEnglish
Pages (from-to)21-29
Number of pages9
JournalExperimental Eye Research
Volume172
Early online date24 Mar 2018
DOIs
Publication statusPublished - Jul 2018

    Research areas

  • Drusen, Sub-retinal pigment epithelial deposits, Mineral-protein interactions, Retinal disease, Quantitative proteomics

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The major histocompatibility complex class I immunopeptidome of extracellular vesicles

    Synowsky, S. A., Shirran, S. L., Cooke, F. G. M., Antoniou, A. N., Botting, C. H. & Powis, S. J., 13 Oct 2017, In : Journal of Biological Chemistry. 292, p. 17084-17092

    Research output: Contribution to journalArticle

  2. Lamin A/C dysregulation contributes to cardiac pathology in a mouse model of severe spinal muscular atrophy"

    Šoltić, D., Shorrock, H. K., Allardyce, H., Wilson, E. L., Holt, I., Synowsky, S. A., Shirran, S. L., Parson, S., Gillingwater, T. & Fuller, H., 9 Aug 2019, In : Human Molecular Genetics. Advance Article

    Research output: Contribution to journalArticle

  3. On the origin of proteins in human drusen: the meet, greet and stick hypothesis

    Bergen, A. A., Arya, S., Koster, C., Pilgrim, M. G., Wiatrek-Moumoulidis, D., van der Spek, P., Hauck, S. M., Boon, C. J. F., Emri, E., Stewart, A. J. & Lengyel, I., May 2019, In : Progress in Retinal and Eye Research. 70, p. 55-84 30 p.

    Research output: Contribution to journalArticle

  4. Crosstalk between zinc and fatty acids in plasma

    Coverdale, J. P. C., Khazaipoul, S., Arya, S., Stewart, A. J. & Blindauer, C. A., Apr 2019, In : Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 1864, 4, p. 532-542 11 p.

    Research output: Contribution to journalReview article

ID: 252597345

Top