Skip to content

Research at St Andrews

Quantitative compression optical coherence elastography as an inverse elasticity problem

Research output: Contribution to journalArticle

Author(s)

Li Dong, Philip Wijesinghe, James T. Dantuono, David D. Sampson, Peter R.T. Munro, Brendan F. Kennedy, Assad A. Oberai

School/Research organisations

Abstract

Quantitative elasticity imaging seeks to retrieve spatial maps of elastic moduli of tissue. Unlike strain, which is commonly imaged in compression elastography, elastic moduli are intrinsic properties of tissue, and therefore, this approach reconstructs images that are largely operator and system independent, enabling objective, longitudinal, and multisite diagnoses. Recently, novel quantitative elasticity imaging approaches to compression elastography have been developed. These methods use a calibration layer with known mechanical properties to sense the stress at the tissue surface, which combined with strain, is used to estimate the tissue's elastic moduli by assuming homogeneity in the stress field. However, this assumption is violated in mechanically heterogeneous samples. We present a more general approach to quantitative elasticity imaging that overcomes this limitation through an efficient iterative solution of the inverse elasticity problem using adjoint elasticity equations. We present solutions for linear elastic, isotropic, and incompressible solids; however, this method can be employed for more complex mechanical models. We retrieve the spatial distribution of shear modulus for a tissue-simulating phantom and a tissue sample. This is the first time, to our knowledge, that the iterative solution of the inverse elasticity problem has been implemented on experimentally acquired compression optical coherence elastography data.
Close

Details

Original languageEnglish
Article number7366542
Number of pages11
JournalIEEE Journal of Selected Topics in Quantum Electronics
Volume22
Issue number3
Early online date25 Dec 2015
DOIs
Publication statusPublished - May 2016

    Research areas

  • Compression optical coherence elastography, Inverse elasticity problems, Optical coherence tomography, Quantitative elasticity imaging

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Handheld volumetric manual compression-based quantitative microelastography

    Fang, Q., Frewer, L., Zilkens, R., Krajancich, B., Curatolo, A., Chin, L., Foo, K. Y., Lakhiani, D. D., Sanderson, R. W., Wijesinghe, P., Anstie, J. D., Dessauvagie, B. F., Latham, B., Saunders, C. M. & Kennedy, B. F., 27 Feb 2020, In : Journal of Biophotonics. Early View, e201960196.

    Research output: Contribution to journalArticle

  2. Three-dimensional imaging of cell and extracellular matrix elasticity using quantitative micro-elastography

    Hepburn, M. S., Wijesinghe, P., Major, L. G., Li, J., Mowla, A., Astell, C., Park, H. W., Hwang, Y., Choi, Y. S. & Kennedy, B. F., 1 Feb 2020, In : Biomedical Optics Express. 11, 2, p. 867-884 18 p.

    Research output: Contribution to journalArticle

  3. Optimal compressive multiphoton imaging at depth using single-pixel detection

    Wijesinghe, P., Escobet Montalban, A., Chen, M., Munro, P. R. T. & Dholakia, K., 15 Oct 2019, In : Optics Letters. 44, 20, p. 4981-4984 4 p.

    Research output: Contribution to journalLetter

  4. Handheld probe for quantitative micro-elastography

    Fang, Q., Krajancich, B., Chin, L., Zilkens, R., Curatolo, A., Frewer, L., Anstie, J. D., Wijesinghe, P., Hall, C., Dessauvagie, B. F., Latham, B., Saunders, C. M. & Kennedy, B. F., 1 Aug 2019, In : Biomedical Optics Express. 10, 8, p. 4034-4049 16 p.

    Research output: Contribution to journalArticle

  5. Finger-mounted quantitative micro-elastography

    Sanderson, R. W., Curatolo, A., Wijesinghe, P., Chin, L. & Kennedy, B. F., 1 Apr 2019, In : Biomedical Optics Express. 10, 4, p. 1760-1773 14 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Strain tensor imaging in compression optical coherence elastography

    Wijesinghe, P., Chin, L. & Kennedy, B. F., Jan 2019, In : IEEE Journal of Selected Topics in Quantum Electronics. 25, 1, 12 p., 5100212.

    Research output: Contribution to journalArticle

  2. Ultrafast high-repetition-rate waveguide lasers

    Shepherd, D., Choudhary, A., Lagatsky, A. A., Kannan, P., Beecher, S., Eason, R., Mackenzie, J., Feng, X., Sibbett, W. & Brown, C. T. A., Mar 2016, In : IEEE Journal of Selected Topics in Quantum Electronics. 22, 2

    Research output: Contribution to journalArticle

  3. A pulsed nonclassical light source driven by an integrated electrically triggered quantum dot microlaser

    Munnelly, P., Heindel, T., Karow, M. M., Höfling, S., Kamp, M., Schneider, C. & Reitzenstein, S., Nov 2015, In : IEEE Journal of Selected Topics in Quantum Electronics. 21, 6, 9 p., 1900609.

    Research output: Contribution to journalArticle

  4. Fano-like interference in the emission spectra of multimode organic microcavity

    Slowik, I., Zhang, Y., Mischok, A., Lyssenko, V. G., Fröb, H., Kronenberg, N. M., Gather, M. C. & Leo, K., 28 Aug 2015, In : IEEE Journal of Selected Topics in Quantum Electronics. 22, 1, 6 p., 2900106.

    Research output: Contribution to journalArticle

ID: 266561565

Top