Skip to content

Research at St Andrews

Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length 'imprecise' intermediates

Research output: Contribution to journalArticle

Author(s)

Kym Lowry, Andrew Woodman, Jonathan Cook, David J. Evans

School/Research organisations

Abstract

Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of 'evolution by duplication' in the positive-strand RNA viruses.

Close

Details

Original languageEnglish
Article numbere1004191
Number of pages17
JournalPLoS Pathogens
Volume10
Issue number6
DOIs
StatePublished - 12 Jun 2014

    Research areas

  • Vaccine-derived poliovirus, Ribosomal entry site, Frequent recombination, In-vitro

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Mechanisms and consequences of positive-strand RNA virus recombination

    Bentley, K. & Evans, D. J. 1 Oct 2018 In : Journal of General Virology. 99, 10, p. 1345-1356

    Research output: Contribution to journalReview article

  2. Energy limitation of cyanophage development: implications for marine carbon cycling

    Puxty, R. J., Evans, D. J., Millard, A. D. & Scanlan, D. J. May 2018 In : ISME Journal. 12, 5, p. 1273-1286 14 p.

    Research output: Contribution to journalArticle

  3. CpG and UpA dinucleotides in both coding and non-coding regions of echovirus 7 inhibit replication initiation post-entry

    Fros, J. J., Dietrich, I., Alshaikhahmed, K., Passchier, T. C., Evans, D. J. & Simmonds, P. 29 Sep 2017 In : eLife. 6, 29 p., e29112

    Research output: Contribution to journalArticle

  4. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination

    Woodman, A., Arnold, J., Cameron, C. & Evans, D. J. 19 Aug 2016 In : Nucleic Acids Research. 44, 14, p. 6883-6895

    Research output: Contribution to journalArticle

Related by journal

  1. Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei

    Tonini, M. L., Peña-Diaz, P., Haindrich, A. C., Basu, S., Kriegová, E., Pierik, A. J., Lill, R., MacNeill, S. A., Smith, T. K. & Lukeš, J. 22 Oct 2018 In : PLoS Pathogens. 14, 10, 31 p., e1007326

    Research output: Contribution to journalArticle

  2. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase

    Liu, X-J., Yang, B., Huang, S-N., Wu, C-C., Li, X-J., Cheng, S., Jiang, X., Hu, F., Ming, Y-Z., Nevels, M. M., Britt, W. J., Rayner, S., Tang, Q., Zeng, W-B., Zhao, F. & Luo, M-H. 27 Jul 2017 In : PLoS Pathogens. 13, 7, 28 p., e1006542

    Research output: Contribution to journalArticle

  3. Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Harwardt, T., Lukas, S., Zenger, M., Reitberger, T., Danzer, D., Übner, T., Munday, D. C., Nevels, M. & Paulus, C. 7 Jul 2016 In : PLoS Pathogens. 12, 7, 39 p., e1005748

    Research output: Contribution to journalArticle

  4. Vaccinia virus immunomodulator A46: a lipid and protein-binding scaffold for sequestering host TIR-domain proteins

    Fedosyuk, S., Bezerra, G. A., Radakovics, K., Smith, T. K., Sammito, M., Bobik, N., Round, A., Ten Eyck, L. F., Djinović-Carugo, K., Usón, I. & Skern, T. 14 Dec 2016 In : PLoS Pathogens. 12, 12, 24 p., e1006079

    Research output: Contribution to journalArticle

  5. NEDDylation is essential for Kaposi’s Sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target

    Hughes, D. J., Wood, J. J., Jackson, B. R., Baquero-Pérez, B. & Whitehouse, A. 20 Mar 2015 In : PLoS Pathogens. 11, 3, 26 p., e1004771

    Research output: Contribution to journalArticle

Related by journal

  1. PLoS Pathogens (Journal)

    Smith, T. K. (Member of editorial board)
    2015 → …

    Activity: Publication peer-review and editorial workEditor of research journal

ID: 211241441