Skip to content

Research at St Andrews

Responses of bottlenose dolphins and harbor porpoises to impact and vibration piling noise during harbor construction

Research output: Research - peer-reviewArticle

DOI

Open Access permissions

Open

Author(s)

Isla Graham, Enrico Pirotta, Nathan Merchant, Adrian Farcas, Tim Barton, Barbara Cheney, Gordon D. Hastie, Paul Thompson

School/Research organisations

Abstract

The development of risk assessments for the exposure of protected populations to noise from coastal construction is constrained by uncertainty over the nature and extent of marine mammal responses to man-made noise. Stakeholder concern often focuses on the potential for local displacement caused by impact piling, where piles are hammered into the seabed. To mitigate this threat, use of vibration piling, where piles are shaken into place with a vibratory hammer, is often encouraged due to presumed impact reduction. However, data on comparative responses of cetaceans to these different noise sources are lacking. We studied the responses of bottlenose dolphins and harbor porpoises to both impact and vibration pile driving noise during harbor construction works in northeast Scotland, using passive acoustic monitoring devices to record cetacean activity and noise recorders to measure and predict received noise levels. Local abundance and patterns of occurrence of bottlenose dolphins were also compared with a five-year baseline. The median peak-to-peak source level estimated for impact piling was 240 dB re 1 μPa (single-pulse sound exposure level [SEL] 198 dB re 1 μPa2 s), and the r.m.s. source level for vibration piling was 192 dB re 1 μPa. Predicted received broadband SEL values 812 m from the piling site were markedly lower due to high propagation loss: 133.4 dB re 1 μPa2 s (impact) and 128.9 dB re 1 μPa2 s (vibration). Bottlenose dolphins and harbor porpoises were not excluded from sites in the vicinity of impact piling or vibration piling; nevertheless, some small effects were detected. Bottlenose dolphins spent a reduced period of time in the vicinity of construction works during both impact and vibration piling. The probability of occurrence of both cetacean species was also slightly less during periods of vibration piling. This work provides developers and managers with the first evidence of the comparative effects of vibration and impact piling on small cetaceans, enabling more informed risk assessments, policy frameworks, and mitigation plans. In particular, our results emphasize the need for better understanding of noise levels and behavioral responses to vibration piling before recommending its use to mitigate impact piling.
Close

Details

Original languageEnglish
Article numbere01793
Number of pages16
JournalEcosphere
Volume8
Issue number5
Early online date25 May 2017
DOIs
StatePublished - May 2017

    Research areas

  • Acoustic disturbance, Anthropogenic noise, Behavioral response, Coastal development, Environmental risk assessment, Marine mammal conservation, Marine protected area

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Harbour seals avoid tidal turbine noise: implications for collision risk

    Hastie, G. D., Russell, D. J. F., Lepper, P., Elliott, J., Wilson, B., Benjamins, S. & Thompson, D. Mar 2018 In : Journal of Applied Ecology. 55, 2, p. 684-693 10 p.

    Research output: Research - peer-reviewArticle

  2. Seals and shipping: quantifying population risk and individual exposure to vessel noise

    Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L. & Thompson, D. Dec 2017 In : Journal of Applied Ecology. 54, 6, p. 1930-1940

    Research output: Research - peer-reviewArticle

  3. Harbour porpoise distribution can vary at small spatiotemporal scales in energetic habitats

    Benjamins, S., van Geel, N., Hastie, G., Elliott, J. & Wilson, B. Jul 2017 In : Deep Sea Research Part II: Topical Studies in Oceanography. 141, p. 191-202 12 p.

    Research output: Research - peer-reviewArticle

  4. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean

    Rosen, D., Hindle, A., Fahlman, A., Gerlinsky, C., Goundie, E., Hastie, G. D., Volpov, B. & Trites, A. Jan 2017 In : Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology. 187, 1, p. 29-50 22 p.

    Research output: Research - peer-reviewArticle

Related by journal

  1. Individual, ecological, and anthropogenic influences on activity budgets of long-finned pilot whales

    Isojunno, S., Sadykova, D., DeRuiter, S., Curé, C., Visser, F., Thomas, L., Miller, P. J. O. & Harris, C. M. Dec 2017 In : Ecosphere. 8, 12, 26 p., e02044

    Research output: Research - peer-reviewArticle

  2. Mate limitation in sea lice infesting wild salmon hosts: the influence of parasite sex ratio and aggregation

    Cox, R., Groner, M., Todd, C. D., Gettinby, G., Patanasatienkul, P. & Revie, C. Dec 2017 In : Ecosphere. 8, 12, 19 p., e02040

    Research output: Research - peer-reviewArticle

  3. A new approach to estimate fecundity rate from inter-birth intervals

    Arso Civil, M., Cheney, B., Quick, N. J., Thompson, P. M. & Hammond, P. S. Apr 2017 In : Ecosphere. 8, 4, 10 p., e01796

    Research output: Research - peer-reviewArticle

  4. Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories

    Hindell, M. A., McMahon, C. R., Bester, M. N., Boehme, L., Costa, D., Fedak, M., Guinet, C., Herraiz-Borreguero, L., Harcourt, R. G., Huckstadt, L., Kovacs, K. M., Lydersen, C., McInytre, T., Muelbert, M., Roquet, F., Williams, G. & Charrassin, J-B. 26 May 2016 In : Ecosphere. 7, 5, p. 1-27 27 p., e01213

    Research output: Research - peer-reviewArticle

ID: 249468009