Skip to content

Research at St Andrews

Revisiting Batchelor's theory of two-dimensional turbulence

Research output: Contribution to journalArticle

Abstract

Recent mathematical results have shown that a central assumption in the theory of two-dimensional turbulence proposed by Batchelor (Phys. Fluids, vol. 12, 1969, p. 233) is false. That theory, which predicts a X-2/3 k(-1) enstrophy spectrum in the inertial range of freely-decaying turbulence, and which has evidently been successful in describing certain aspects of numerical simulations at high Reynolds numbers Re, assumes that there is a finite, non-zero enstrophy dissipation X in the limit of infinite Re. This, however, is not true for flows having finite vorticity. The enstrophy dissipation in fact vanishes. We revisit Batchelor's theory and propose a simple modification of it to ensure vanishing X in the limit Re -> infinity. Our proposal is supported by high Reynolds number simulations which confirm that X decays like 1/ln Re, and which, following the time of peak enstrophy dissipation, exhibit enstrophy spectra containing an increasing proportion of the total enstrophy (omega(2))/2 in the inertial range as Re increases. Together with the mathematical analysis of vanishing X, these observations motivate a straightforward and, indeed, alarmingly simple modification of Batchelor's theory: just replace Batchelor's enstrophy spectrum X(2/3)k(-1) with (omega(2))k(-1)(In Re)(-1).

Close

Details

Original languageEnglish
Pages (from-to)379-391
Number of pages13
JournalJournal of Fluid Mechanics
Volume591
DOIs
Publication statusPublished - 25 Nov 2007

    Research areas

  • Dimensional decaying turbulence, Euler equations, Enstrophy dissipation, Contour dynamics, Self-similarity, High-resolution, Energy, Limit

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Late time evolution of unforced inviscid two-dimensional turbulence

    Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. & Tran, C. V., 2009, In : Journal of Fluid Mechanics. 640, p. 215-233 19 p.

    Research output: Contribution to journalArticle

  2. Unifying scaling theory for vortex dynamics in two-dimensional turbulence

    Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V., 29 Aug 2008, In : Physical Review Letters. 101, 9, 4 p., 094501.

    Research output: Contribution to journalArticle

  3. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

  4. Zonal jet formation by potential vorticity mixing at large and small scales

    Scott, R. K. & Dritschel, D. G., 2019, Zonal Jets: Phenomenology, Genesis and Physics. Galperin, B. & Read, P. L. (eds.). Cambridge University Press, p. 238-246

    Research output: Chapter in Book/Report/Conference proceedingChapter

Related by journal

  1. Journal of Fluid Mechanics (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  2. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

  3. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices

    Reinaud, J. N. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 60-78

    Research output: Contribution to journalArticle

  4. Three-dimensional quasi-geostrophic vortex equilibria with m−fold symmetry

    Reinaud, J. N., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 32-59

    Research output: Contribution to journalArticle

ID: 397186