Skip to content

Research at St Andrews

Ru/TiO2-catalysed hydrogenation of xylose: the role of crystal structure of the support

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Carlos Hernandez-Mejia, Edwin S. Gnanakumar, Alma Olivos-Suarez, Jorge Gascon, Heather Frances Greer, Wuzong Zhou, Gadi Rothenberg, N. Raveendran Shiju

School/Research organisations

Abstract

Effective dispersion of the active species over the support almost always guarantees high catalytic efficiency. To achieve this high dispersion, favourable interaction of the active species with the support is crucial. We show here that the crystal structure of the titania support determines the interaction and consequently the nature of Ru deposited on the support. Similar crystal structures of RuO2 and rutile titania lead to a good lattice matching and ensure a better interaction, maintaining the initial good dispersion of the active species on the support and leading to better activity and selectivity. This highlights the importance of understanding the physico-chemical processes during catalyst preparation steps.

Close

Details

Original languageEnglish
Pages (from-to)577-582
JournalCatalysis Science & Technology
Volume6
Issue number2
Early online date24 Aug 2015
DOIs
Publication statusPublished - 21 Jan 2016

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Incommensurate-commensurate transition in the geometric ferroelectric LaTaO4

    Howieson, G. W., Wu, S., Gibbs, A. S., Zhou, W., Scott, J. F. & Morrison, F. D., 4 Nov 2020, In: Advanced Functional Materials. 30, 45, 10 p., 2004667.

    Research output: Contribution to journalArticlepeer-review

  2. Efficient luminescence from CsPbBr3 nanoparticles embedded in Cs4PbBr6

    Bao, Z., Tseng, Y. J., You, W., Zheng, W., Chen, X., Mahlik, S., Lazarowska, A., Lesniewski, T., Grinberg, M., Ma, C., Sun, W., Zhou, W., Liu, R. S. & Attfield, J. P., 17 Sep 2020, In: Journal of Physical Chemistry Letters. 11, 18, p. 7637-7642 6 p.

    Research output: Contribution to journalArticlepeer-review

  3. Surface trace doping of Na enhancing structure stability and adsorption properties of Li1.6Mn1.6O4 for Li+ recovery

    Qian, F., Zhao, B., Guo, M., Wu, Z., Zhou, W. & Liu, Z., 13 Aug 2020, In: Separation and Purification Technology. In press

    Research output: Contribution to journalArticlepeer-review

  4. Crepe cake structured layered double hydroxide/sulfur/graphene as a pPositive electrode material for Li-S batteries

    Liu, S., Zhang, X., Wu, S., Chen, X., Yang, X., Yue, W., Lu, J. & Zhou, W., 15 Jun 2020, In: ACS Nano. Articles ASAP

    Research output: Contribution to journalArticlepeer-review

  5. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water

    Wang, Y., Liu, X., Han, X., Godin, R., Chen, J., Zhou, W., Jiang, C., Thompson, J., Bayazit, M., Shevlin, S., Durrant, J., Guo, Z. & Tang, J., 21 May 2020, In: Nature Communications. 11, 9 p., 2531.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry Reaction

    Li, C., Dickson, R., Rockstroh, N., Rabeah, J., Cordes, D. B., Slawin, A. M. Z., Hünemörder, P., Spannenberg, A., Buehl, M., Mejía, E., Zysman-Colman, E. & Kamer, P. C. J., 18 Sep 2020, In: Catalysis Science & Technology. Advance Article, 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Effect of oxygen coordination environment of Ca-Mn oxides on catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural

    Yang, J., Yu, H., Wang, Y., Qi, F., Liu, H., Lou, L-L., Yu, K., Zhou, W. & Liu, S., 7 Dec 2019, In: Catalysis Science & Technology. 9, 23, p. 6659-6668

    Research output: Contribution to journalArticlepeer-review

  3. Photoredox catalysts based on Earth-abundant metal complexes

    Hockin, B., Li, C., Robertson, N. & Zysman-Colman, E., 21 Feb 2019, In: Catalysis Science & Technology. 9, 4, p. 889-915

    Research output: Contribution to journalArticlepeer-review

  4. Towards practical earth abundant reduction catalysis: design of improved catalysts for manganese catalysed hydrogenation

    Widegren, M. B. & Clarke, M. L., 7 Nov 2019, In: Catalysis Science & Technology. 9, 21, p. 6047-6058

    Research output: Contribution to journalArticlepeer-review

  5. Less hindered ligands give improved catalysts for the nickel catalysed Grignard cross-coupling of aromatic ethers

    Harkness, G. J. & Clarke, M. L., 7 Jan 2018, In: Catalysis Science & Technology. 8, 1, p. 328-334

    Research output: Contribution to journalArticlepeer-review

ID: 215925210

Top