Skip to content

Research at St Andrews

Selective inhibition mediates the sequential recruitment of motor pools

Research output: Contribution to journalArticle

Author(s)

Maarten F. Zwart, Stefan R. Pulver, James W. Truman, Akira Fushiki, Richard D. Fetter, Albert Cardona, Matthias Landgraf

School/Research organisations

Abstract

Locomotor systems generate diverse motor patterns to produce the movements underlying behavior, requiring that motor neurons be recruited at various phases of the locomotor cycle. Reciprocal inhibition produces alternating motor patterns; however, the mechanisms that generate other phasic relationships between intrasegmental motor pools are unknown. Here, we investigate one such motor pattern in the Drosophila larva, using a multidisciplinary approach including electrophysiology and ssTEM-based circuit reconstruction. We find that two motor pools that are sequentially recruited during locomotion have identical excitable properties. In contrast, they receive input from divergent premotor circuits. We find that this motor pattern is not orchestrated by differential excitatory input but by a GABAergic interneuron acting as a delay line to the later-recruited motor pool. Our findings show how a motor pattern is generated as a function of the modular organization of locomotor networks through segregation of inhibition, a potentially general mechanism for sequential motor patterns.

Close

Details

Original languageEnglish
Pages (from-to)615-628
Number of pages14
JournalNeuron
Volume91
Issue number3
Early online date14 Jul 2016
DOIs
Publication statusPublished - 3 Aug 2016

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Selective inhibition mediates the sequential recruitment of motor pools: Correction

    Zwart, M. F., Pulver, S., Truman, J., Fushiki, A., Cardona, A. & Landgraf, M., 17 Aug 2016, In : Neuron. 91, 4, p. 944

    Research output: Contribution to journalArticle

  2. A GABAergic Maf-expressing interneuron subset regulates the speed of locomotion in Drosophila

    Babski, H., Jovanic, T., Surel, C., Yoshikawa, S., Zwart, M. F., Valmier, J., Thomas, J. B., Enriquez, J., Carroll, P. & Garcès, A., 22 Oct 2019, In : Nature Communications. 10, 17 p., 4796.

    Research output: Contribution to journalArticle

  3. Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging

    Murawski, C., Mischok, A., Booth, J. H., Kumar, J. D., Archer, E., Tropf, L. C., Keum, C., Deng, Y., Yoshida, K., Samuel, I. D. W., Schubert, M., Pulver, S. & Gather, M. C., 5 Sep 2019, In : Advanced Materials. Early View, 8 p.

    Research output: Contribution to journalArticle

  4. Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae

    Kohsaka, H., Zwart, M. F., Fushiki, A., Fetter, R. D., Truman, J. W., Cardona, A. & Nose, A., 14 Jun 2019, In : Nature Communications. 10, 11 p., 2654.

    Research output: Contribution to journalArticle

  5. Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila

    Oswald, M. C., Brooks, P. S., Zwart, M. F., Mukherjee, A., West, R. J., Giachello, C. N., Morarach, K., Baines, R. A., Sweeney, S. T. & Landgraf, M., 17 Dec 2018, In : eLife. 7, 27 p., e39393.

    Research output: Contribution to journalArticle

Related by journal

  1. An open resource for non-human primate imaging

    Milham, M. P., Ai, L., Koo, B., Xu, T., Amiez, C., Balezeau, F., Baxter, M. G., Blezer, E. L. A., Brochier, T., Chen, A., Croxson, P. L., Damatac, C. G., Dehaene, S., Everling, S., Fair, D. A., Fleysher, L., Freiwald, W., Froudist-Walsh, S., Griffiths, T. D., Guedj, C. & 50 others, Hadj-Bouziane, F., Ben Hamed, S., Harel, N., Hiba, B., Jarraya, B., Jung, B., Kastner, S., Klink, P. C., Kwok, S. C., Laland, K. N., Leopold, D. A., Lindenfors, P., Mars, R. B., Menon, R. S., Messinger, A., Meunier, M., Mok, K., Morrison, J. H., Nacef, J., Nagy, J., Rios, M. O., Petkov, C. I., Pinsk, M., Poirier, C., Procyk, E., Rajimehr, R., Reader, S. M., Roelfsema, P. R., Rudko, D. A., Rushworth, M. F. S., Russ, B. E., Sallet, J., Schmid, M. C., Schwiedrzik, C. M., Seidlitz, J., Sein, J., Shmuel, A., Sullivan, E. L., Ungerleider, L., Thiele, A., Todorov, O. S., Tsao, D., Wang, Z., Wilson, C. R. E., Yacoub, E., Ye, F. Q., Zarco, W., Zhou, Y., Margulies, D. S. & Schroeder, C. E., 10 Oct 2018, In : Neuron. 100, 1, p. 61-74 e2.

    Research output: Contribution to journalArticle

  2. Selective inhibition mediates the sequential recruitment of motor pools: Correction

    Zwart, M. F., Pulver, S., Truman, J., Fushiki, A., Cardona, A. & Landgraf, M., 17 Aug 2016, In : Neuron. 91, 4, p. 944

    Research output: Contribution to journalArticle

  3. Even-skipped+ interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude

    Heckscher, E., Zarin, A., Faumont, S., Clark, M., Manning, L., Fushiki, A., Schneider-Mizell, C., Fetter, R. D., Truman, J., Zwart, M. F., Landgraf, M., Cardona, A., Lockery, S. & Doe, C., 21 Oct 2015, In : Neuron. 88, 2, p. 314-329

    Research output: Contribution to journalArticle

  4. Fast silencing reveals a lost role for reciprocal inhibition in locomotion

    Moult, P. R., Cottrell, G. A. & Li, W., 9 Jan 2013, In : Neuron. 77, 1, p. 129-140 12 p.

    Research output: Contribution to journalArticle

ID: 244761186

Top