Skip to content

Research at St Andrews

Sensor-based human activity mining using Dirichlet process mixtures of directional statistical models

Research output: Chapter in Book/Report/Conference proceedingConference contribution


We have witnessed an increasing number of activity-aware applications being deployed in real-world environments, including smart home and mobile healthcare. The key enabler to these applications is sensor-based human activity recognition; that is, recognising and analysing human daily activities from wearable and ambient sensors. With the power of machine learning we can recognise complex correlations between various types of sensor data and the activities being observed. However the challenges still remain: (1) they often rely on a large amount of labelled training data to build the model, and (2) they cannot dynamically adapt the model with emerging or changing activity patterns over time. To directly address these challenges, we propose a Bayesian nonparametric model, i.e. Dirichlet process mixture of conditionally independent von Mises Fisher models, to enable both unsupervised and semi-supervised dynamic learning of human activities. The Bayesian nonparametric model can dynamically adapt itself to the evolving activity patterns without human intervention and the learning results can be used to alleviate the annotation effort. We evaluate our approach agains treal-world, third-party smart home datasets, and demonstrate significant improvements over the state-of-the-art techniques in both unsupervised and supervised settings.


Original languageEnglish
Title of host publicationProceedings of the 6th IEEE International Conference on Data Science and Advanced Analytics (DSAA'19)
PublisherIEEE Computer Society
Publication statusPublished - 5 Oct 2019
Event6th IEEE International Conference on Data Science and Advanced Analytics (DSAA'19) - Washington DC, United States
Duration: 5 Oct 20198 Oct 2019
Conference number: 6


Conference6th IEEE International Conference on Data Science and Advanced Analytics (DSAA'19)
Abbreviated titleDSAA 2019
CountryUnited States
CityWashington DC
Internet address

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Distributed self-monitoring sensor networks via Markov switching Dynamic Linear Models

    Fang, L., Ye, J. & Dobson, S. A., 16 Jun 2019, Proceedings 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2019). IEEE Computer Society, p. 33-42 8780572

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Discovery and recognition of unknown activities

    Ye, J., Fang, L. & Dobson, S. A., 12 Sep 2016, p. 783-792. 10 p.

    Research output: Contribution to conferencePaper

  3. Representation learning for minority and subtle activities in a smart home environment

    Rosales Sanabria, A., Kelsey, T., Dobson, S. A. & Ye, J., 28 Oct 2019, In : Journal of Ambient Intelligence and Smart Environments. Pre-press, p. 1-19

    Research output: Contribution to journalArticle

  4. Spatial awareness in pervasive ecosystems

    Dobson, S. A., Viroli, M., Fernandez-Marquez, J-L., Zambonelli, F., Stevenson, G. T., di Marzo Serugendo, G., Montagna, S., Pianini, D., Ye, J., Castelli, G. & Rosi, A., 7 Dec 2016, In : The Knowledge Engineering Review. 31, 4, p. 343-366

    Research output: Contribution to journalArticle

ID: 260325128