Skip to content

Research at St Andrews

Serotonin in the developing stomatogastric system of the lobster, Homarus americanus

Research output: Contribution to journalArticle

DOI

Author(s)

Kathryn S Richards, David J Simon, Stefan R Pulver, Barbara S Beltz, Eve Marder

School/Research organisations

Abstract

We studied the development of the serotonergic modulation of the stomatogastric nervous system of the lobster, Homarus americanus. Although the stomatogastric ganglion (STG) is present early in embryonic development, serotonin immunoreactivity is not visible in the STG until the second larval stage. However, incubation of the STG with exogenous serotonin showed that a serotonin transporter is present in embryonic and early larval stages. Serotonin uptake was blocked by paroxetine and 0% Na(+) saline. The presence of a serotonin transporter in the embryonic STG suggests that hormonally liberated serotonin could be taken up by the STG, and potentially released as a "borrowed transmitter". Consistent with a potential hormonal role, serotonin is found in the pericardial organs, a major neurosecretory structure, by midembryonic development. The rhythmic motor patterns produced by embryonic and larval STGs were decreased in frequency by serotonin. Lateral Pyloric (LP) neuron-evoked excitatory junctional potentials (EJPs) in the embryos and the first larval stage (LI) were larger, slower, and more variable than those in the adult. The amplitude of adult LP neuron-evoked EJPs was increased more than twofold in serotonin, but in embryos and LI preparations this effect was negligible. In embryos and LI preparations, serotonin increased the occurrence of muscle fiber action potentials and altered the EJP wave-form. These data demonstrate that serotonin receptors are present in the stomatogastric nervous system early in development, and suggest that the role of serotonin changes from modulation of muscle fiber excitability early in development to enhancement of neurally evoked EJPs in the adult.
Close

Details

Original languageEnglish
Pages (from-to)380-92
Number of pages13
JournalJournal of neurobiology
Volume54
Issue number2
DOIs
Publication statusPublished - 5 Feb 2003

    Research areas

  • Age Factors, Animals, Digestive System, Female, Immunohistochemistry, In Vitro Techniques, Male, Membrane Potentials, Nephropidae, Nervous System, Neuromuscular Junction, Neurons, Paroxetine, Serotonin, Serotonin Uptake Inhibitors

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging

    Murawski, C., Mischok, A., Booth, J. H., Kumar, J. D., Archer, E., Tropf, L. C., Keum, C., Deng, Y., Yoshida, K., Samuel, I. D. W., Schubert, M., Pulver, S. & Gather, M. C., 5 Sep 2019, In : Advanced Materials. Early View, 8 p.

    Research output: Contribution to journalArticle

  2. Organic light-emitting diodes for optogenetic stimulation of Drosophila larvae

    Murawski, C., Morton, A., Samuel, I. D. W., Pulver, S. & Gather, M. C., 14 Nov 2016, Proceedings, Light, Energy and the Environment. Optical Society of American (OSA), 3 p. JW4A.9. (Fourier Transform Spectroscopy).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Selective inhibition mediates the sequential recruitment of motor pools: Correction

    Zwart, M. F., Pulver, S., Truman, J., Fushiki, A., Cardona, A. & Landgraf, M., 17 Aug 2016, In : Neuron. 91, 4, p. 944

    Research output: Contribution to journalArticle

  4. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    Morton, A., Murawski, C., Pulver, S. & Gather, M. C., 3 Aug 2016, In : Scientific Reports. 6, 8 p., 31117.

    Research output: Contribution to journalArticle

  5. Selective inhibition mediates the sequential recruitment of motor pools

    Zwart, M. F., Pulver, S. R., Truman, J. W., Fushiki, A., Fetter, R. D., Cardona, A. & Landgraf, M., 3 Aug 2016, In : Neuron. 91, 3, p. 615-628 14 p.

    Research output: Contribution to journalArticle

Related by journal

ID: 167961316

Top