Skip to content

Research at St Andrews

Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report

Research output: Contribution to journalArticle

Author(s)

Janet Cox Singh, Jessie Hiu, Sebastian B. Lucas, Paul C. Divis, Mohammad Zulkarnaen, Patricia Chandran, Kum T. Wong, Patricia Adem, Sherif R. Zaki, Balbir Singh, Sanjeev Krishna

School/Research organisations

Abstract

Background: Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here.

Case presentation: A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a postmortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent.

Conclusions: The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further study of knowlesi malaria will aid the interpretation of, often conflicting, information on malaria pathophysiology in humans.

Close

Details

Original languageEnglish
Article number10
Number of pages7
JournalMalaria Journal
Volume9
DOIs
Publication statusPublished - 11 Jan 2010

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Plasmodium knowlesi: experimental model, zoonotic pathogen and golden opportunity?

    Cox-Singh, J., Jan 2018, In : Parasitology. 145, 1, p. 1-5 4 p.

    Research output: Contribution to journalEditorial

  2. Human infections with Plasmodium knowlesi - zoonotic malaria

    Millar, S. B. & Cox Singh, J., Jul 2015, In : Clinical Microbiology and Infection. 21, 7, p. 640-648

    Research output: Contribution to journalArticle

  3. Plasmodium knowlesi: from severe zoonosis to animal model

    Cox Singh, J. & Culleton, R., Jun 2015, In : Trends in Parasitology. 31, 6

    Research output: Contribution to journalArticle

  4. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism

    Monsanto Pinheiro, M., Ahmed, M. A., Millar, S. B., Sanderson, T., Otto, T. D., Lu, W. C., Krishna, S., Rayner, J. C. & Cox Singh, J., 1 Apr 2015, In : PLoS One. 10, 4, 16 p., e0121303.

    Research output: Contribution to journalArticle

  5. Plasmodium knowlesi – an emerging pathogen

    Ahmed, M. A. & Cox Singh, J., Apr 2015, In : ISBT Science Series. 10, S1, p. 134-140

    Research output: Contribution to journalReview article

Related by journal

  1. The acquisition of long-lived memory B cell responses to merozoite surface protein-8 in individuals with Plasmodium vivax infection

    Kochayoo, P., Kittisenachai, N., Changrob, S., Wangriatisak, K., Muh, F., Chootong, P. & Han, E-T., 31 May 2019, In : Malaria Journal. 18, 10 p., 188.

    Research output: Contribution to journalArticle

  2. Diversity pattern of Duffy binding protein sequence among Duffy-negatives and Duffy-positives in Sudan

    Hoque, M. R., Elfaki, M. M. A., Ahmed, M. A., Lee, S-K., Muh, F., Albsheer, M. M. A., Hamid, M. M. A. & Han, E-T., 17 Aug 2018, In : Malaria Journal. 17, 10 p., 297.

    Research output: Contribution to journalArticle

  3. Estimation on local transmission of malaria by serological approach under low transmission setting in Myanmar

    Nyunt, M. H., Soe, T. N., Shein, T., Zaw, N. N., Han, S. S., Muh, F., Lee, S-K., Han, J-H., Park, J-H., Ha, K-S., Park, W. S., Hong, S-H., Kyaw, M. P. & Han, E-T., 5 Jan 2018, In : Malaria Journal. 17, 9 p., 6.

    Research output: Contribution to journalArticle

  4. Genetic diversity and natural selection of Plasmodium knowlesi merozoite surface protein 1 paralog gene in Malaysia

    Ahmed, M. A., Fauzi, M. & Han, E-T., 14 Mar 2018, In : Malaria Journal. 17, 11 p., 115.

    Research output: Contribution to journalArticle

  5. In vitro invasion inhibition assay using antibodies against Plasmodium knowlesi Duffy binding protein alpha and apical membrane antigen protein 1 in human erythrocyte-adapted P. knowlesi A1-H.1 strain

    Muh, F., Lee, S-K., Hoque, M. R., Han, J-H., Park, J-H., Firdaus, E. R., Moon, R. W., Lau, Y. L. & Han, E-T., 27 Jul 2018, In : Malaria Journal. 17, 11 p., 272.

    Research output: Contribution to journalArticle

ID: 23165740