Skip to content

Research at St Andrews

Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen

Research output: Contribution to journalArticle

Abstract

Many types of animals exhibit aggregative behavior: birds flock, bees swarm, fish shoal, and ungulates herd [1]. Terrestrial and aerial aggregations can be observed directly, and photographic techniques have provided insights into the behaviors of animals in these environments [2] and data against which behavioral theory can be tested [3]. Underwater, however, limited visibility can hamper direct observation, and understanding of shoaling remains incomplete. We used multibeam sonar to observe three-dimensional structure of Antarctic krill shoals acoustically [4]. Shoal size and packing density varied greatly, but surface area:volume ratios (roughnesses) were distributed narrowly about ∼3.3 m−1 [5]. Shoals of clupeid fish (e.g., sardine, anchovy) from geographically and oceanographically diverse locations have very similar roughnesses [6,7,8]. This common emergent shape property suggests common driving forces across diverse ecosystems. Group behavior can be complex [9], but a simple tradeoff—that we model—in which individual fish and krill juggle only their access to oxygen-replete water and exposure to predation can explain the observed shoal shape. Decreasing oxygen availability in a warming world ocean [10] may impact shoal structure: because structure affects catchability by predators and fishers [11,12,13], understanding the response will be necessary for ecological and commercial reasons.
Close

Details

Original languageEnglish
Pages (from-to)1758-1762
JournalCurrent Biology
Volume20
Issue number19
DOIs
StatePublished - 16 Sep 2010

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Spatial variability in total and organic mercury levels in Antarctic krill Euphausia superba across the Scotia Sea

    Seco, J., Xavier, J. C., Coelho, J. P., Pereira, B., Tarling, G., Pardal, M. A., Bustamante, P., Stowasser, G., Brierley, A. S. & Pereira, M. E. 14 Jan 2019 In : Environmental Pollution. 247, p. 332-339 8 p.

    Research output: Contribution to journalArticle

  2. Internal lee waves and baroclinic bores over a tropical seamount shark ‘hot-spot’

    Hosegood, P. J., Nimmo-Smith, W. A. M., Proud, R., Adams, K. & Brierley, A. S. 25 Jan 2019 In : Progress in Oceanography. 172, p. 34-50 17 p.

    Research output: Contribution to journalArticle

  3. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass

    Proud, R., Handegard, N. O., Kloser, R., Cox, M. & Brierley, A. S. 19 Apr 2018 In : ICES Journal of Marine Science. Advance Article

    Research output: Contribution to journalArticle

Related by journal

  1. Current Biology (Journal)

    Arnold, K. (Reviewer)
    2007 → …

    Activity: Publication peer-review and editorial workPeer review of manuscripts

  2. Current Biology (Journal)

    Byrne, R. W. (Member of editorial board)
    20052014

    Activity: Publication peer-review and editorial workEditor of research journal

Related by journal

  1. Bonobos prefer individuals that hinder others over those that help

    Krupenye, C. & Hare, B. 22 Jan 2018 In : Current Biology. 28, 2, p. 280-286 e5

    Research output: Contribution to journalArticle

  2. Chimpanzees consider humans' psychological states when drawing statistical inferences

    Eckert, J., Rakoczy, H., Call, J., Herrmann, E. & Hanus, D. 18 Jun 2018 In : Current Biology. 28, 5 p.

    Research output: Contribution to journalArticle

  3. Control of Xenopus tadpole locomotion via selective expression of Ih in excitatory interneurons

    Picton, L. D., Sillar, K. T. & Zhang, H-Y. 17 Dec 2018 In : Current Biology. 28, 24, p. 3911-3923 16 p.

    Research output: Contribution to journalArticle

  4. Corvid technologies: how do New Caledonian crows get their tool designs?

    Rutz, C., Hunt, G. & St Clair, J. 24 Sep 2018 In : Current Biology. 28, 8, p. R1109-R1111 3 p.

    Research output: Contribution to journalComment/debate

  5. Genome biology: unconventional DNA repair in an extreme genome

    Ferrier, D. E. K. & Sogabe, S. 22 Oct 2018 In : Current Biology. 28, 20, p. R1208-R1210

    Research output: Contribution to journalReview article

ID: 3426552