Skip to content

Research at St Andrews

Single-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Timothy David Craggs, Alfonso Brenlla, Richard David Hutton, Malcolm F White, Carlos Penedo

School/Research organisations

Abstract

Flap endonuclease 1 (Fen1) is a highly conserved structure-specific nuclease that catalyses a specific incision to remove 5′ flaps in double-stranded DNA substrates. Fen1 plays an essential role in key cellular processes, such as DNA replication and repair, and mutations that compromise Fen1 expression levels or activity have severe health implications in humans. The nuclease activity of Fen1 and other FEN family members can be stimulated by processivity clamps such as proliferating cell nuclear antigen (PCNA); however, the exact mechanism of PCNA activation is currently unknown. Here, we have used a combination of ensemble and single-molecule Förster resonance energy transfer together with protein-induced fluorescence enhancement to uncouple and investigate the substrate recognition and catalytic steps of Fen1 and Fen1/PCNA complexes. We propose a model in which upon Fen1 binding, a highly dynamic substrate is bent and locked into an open flap conformation where specific Fen1/DNA interactions can be established. PCNA enhances Fen1 recognition of the DNA substrate by further promoting the open flap conformation in a step that may involve facilitated threading of the 5′ ssDNA flap. Merging our data with existing crystallographic and molecular dynamics simulations we provide a solution-based model for the Fen1/PCNA/DNA ternary complex.
Close

Details

Original languageEnglish
Pages (from-to)1857-1872
JournalNucleic Acids Research
Volume42
Issue number3
DOIs
Publication statusPublished - Feb 2014

    Research areas

  • Flap endonuclease 1 (Fen1) , Proliferating cell nuclear antigen (PCNA), Förster resonance energy transfer , Fluorescence enhancement

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Asymmetric base pair opening drives helicase unwinding dynamics

    Colizzi, F., Perez Gonzalez, D. C., Fritzen, R., Levy, Y., White, M. F., Penedo-Esteiro, J. C. & Bussi, G., 5 Nov 2019, In : Proceedings of the National Academy of Sciences of the United States of America. 116, 45, p. 22471-22477 7 p.

    Research output: Contribution to journalArticle

  2. High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein

    Morten, M. J., Gamsjaeger, R., Cubeddu, L., Kariawasam, R., Peregrina, J. R., Penedo-Esteiro, J. C. & White, M. F., Mar 2017, In : Extremophiles. 21, 2, p. 369-379 11 p.

    Research output: Contribution to journalArticle

  3. Mechanism of DNA loading by the DNA repair helicase XPD

    Constantinescu-Aruxandei, D., Petrovic-Stojanovska, B., Penedo, C., White, M. F. & Naismith, J. H., 7 Apr 2016, In : Nucleic Acids Research. 44, 6, p. 2806-2815 10 p.

    Research output: Contribution to journalArticle

  4. Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach

    Morten, M. J., Peregrina, J. R., Figueira-Gonzalez, M., Ackermann, K., Bode, B. E., White, M. F. & Penedo, C., 15 Dec 2015, In : Nucleic Acids Research. 43, 22, p. 10907-10924 18 p.

    Research output: Contribution to journalArticle

  5. PCNA and XPF cooperate to distort DNA substrates

    Hutton, R. D., Craggs, T. D., White, M. F. & Penedo, C., Mar 2010, In : Nucleic Acids Research. 38, 5, p. 1664-1675 12 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence

    Grüschow, S., Athukoralage, J. S., Graham, S., Hoogeboom, T. & White, M. F., 26 Sep 2019, In : Nucleic Acids Research. 47, 17, p. 9259-9270 12 p.

    Research output: Contribution to journalArticle

  2. The ATP-dependent chromatin remodelling enzyme Uls1 prevents Topoisomerase II poisoning

    Swanston, A., Zabrady, K. & Ferreira, H. C., 9 Jul 2019, In : Nucleic Acids Research. 47, 12, p. 6172–6183 12 p.

    Research output: Contribution to journalArticle

  3. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2+

    McCluskey, K. A., Boudreault, J., St-Pierre, P., Perez Gonzalez, C., Chauvier, A., Rizzi, A., Beauregard, P. B., Lafontaine, D. A. & Penedo-Esteiro, J. C., 9 Jul 2019, In : Nucleic Acids Research. 47, 12, p. 6478–6487 10 p.

    Research output: Contribution to journalArticle

  4. Insights into the evolutionary conserved regulation of Rio ATPase activity

    Knüppel, R., Christensen, R., Gray, F. C., Esser, D., Strauss, D., Medenbach, J., Siebers, B., MacNeill, S. A., LaRonde, N. & Ferreira-Cerca, S., 16 Feb 2018, In : Nucleic Acids Research. 46, 3, p. 1441-1456 16 p.

    Research output: Contribution to journalArticle

  5. Prespacer processing and specific integration in a Type I-A CRISPR system

    Rollie, C., Graham, S., Rouillon, C. & White, M. F., 16 Feb 2018, In : Nucleic Acids Research. 46, 3, p. 1007-1020 14 p.

    Research output: Contribution to journalArticle

ID: 75722436

Top