Skip to content

Research at St Andrews

Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

Research output: Contribution to journalArticlepeer-review

Author(s)

Antoine G Godin, Juan A Varela, Zhenghong Gao, Noémie Danné, Julien P Dupuis, Brahim Lounis, Laurent Groc, Laurent Cognet

School/Research organisations

Abstract

The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

Close

Details

Original languageEnglish
Pages (from-to)238-243
Number of pages6
JournalNature Nanotechnology
Volume12
Issue number3
Early online date21 Nov 2016
DOIs
Publication statusPublished - Mar 2017

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. ThX-a next-generation probe for the early detection of amyloid aggregates

    Needham, L. M., Weber, J., Varela, J. A., Fyfe, J. W. B., Do, D. T., Xu, C. K., Tutton, L., Cliffe, R., Keenlyside, B., Klenerman, D., Dobson, C. M., Hunter, C. A., Müller, K. H., O'Holleran, K., Bohndiek, S. E., Snaddon, T. N. & Lee, S. F., 14 May 2020, In: Chemical Science. 11, 18, p. 4578-4583 6 p.

    Research output: Contribution to journalArticlepeer-review

  2. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms

    De, S., Wirthensohn, D. C., Flagmeier, P., Hughes, C., Aprile, F. A., Ruggeri, F. S., Whiten, D. R., Emin, D., Xia, Z., Varela, J. A., Sormanni, P., Kundel, F., Knowles, T. P. J., Dobson, C. M., Bryant, C., Vendruscolo, M. & Klenerman, D., 4 Apr 2019, In: Nature Communications. 10, 11 p., 1541.

    Research output: Contribution to journalArticlepeer-review

  3. Optical structural analysis of individual α-synuclein oligomers

    Varela, J. A., Rodrigues, M., De, S., Flagmeier, P., Gandhi, S., Dobson, C. M., Klenerman, D. & Lee, S. F., 23 Apr 2018, In: Angewandte Chemie International Edition. 57, 18, p. 4886-4890 5 p.

    Research output: Contribution to journalArticlepeer-review

  4. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions

    Qamar, S., Wang, G., Randle, S. J., Ruggeri, F. S., Varela, J. A., Lin, J. Q., Phillips, E. C., Miyashita, A., Williams, D., Ströhl, F., Meadows, W., Ferry, R., Dardov, V. J., Tartaglia, G. G., Farrer, L. A., Kaminski Schierle, G. S., Kaminski, C. F., Holt, C. E., Fraser, P. E., Schmitt-Ulms, G. & 4 others, Klenerman, D., Knowles, T., Vendruscolo, M. & St George-Hyslop, P., 19 Apr 2018, In: Cell. 173, 3, p. 720-734 e15.

    Research output: Contribution to journalArticlepeer-review

  5. Comparative Analysis of Photoluminescence and Upconversion Emission from Individual Carbon Nanotubes for Bioimaging Applications

    Danne, N., Godin, A. G., Gao, Z., Varela, J. A., Groc, L., Lounis, B. & Cognet, L., 21 Feb 2018, In: ACS Photonics. 5, 2, p. 359-364 11 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor

    Lundt, N., Dusanowski, Ł., Sedov, E., Stepanov, P., Glazov, M., Klembt, S., Klaas, M., Beierlein, J., Qin, Y., Tongay, S., Richard, M., Kavokin, A., Höfling, S. & Schneider, C., 22 Jul 2019, In: Nature Nanotechnology. 7 p.

    Research output: Contribution to journalArticlepeer-review

  2. Negative electronic compressibility and tunable spin splitting in WSe2

    Riley, J. M., Meevasana, W., Bawden, L., Asakawa, M., Takayama, T., Eknapakul, T., Kim, T. K., Hoesch, M., Mo, S-K., Takagi, H., Sasagawa, T., Bahramy, M. S. & King, P., Dec 2015, In: Nature Nanotechnology. 10, p. 1043-1047 5 p.

    Research output: Contribution to journalLetterpeer-review

  3. Atomic-scale control of competing electronic phases in ultrathin LaNiO3

    King, P. D. C., Wei, H. I., Nie, Y. F., Uchida, M., Adamo, C., Zhu, S., He, X., Bozovic, I., Schlom, D. G. & Shen, K. M., Jun 2014, In: Nature Nanotechnology. 9, 6, p. 443-447 5 p.

    Research output: Contribution to journalArticlepeer-review

  4. Silicon nanostructures for photonics and photovoltaics

    Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F., 2014, In: Nature Nanotechnology. 9, 1, p. 19-32 14 p.

    Research output: Contribution to journalReview articlepeer-review

ID: 256889478

Top