Skip to content

Research at St Andrews

Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4

Research output: Contribution to journalArticle

Standard

Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4. / Irvine, J. T.S.; West, A. R.

In: Journal of Solid State Chemistry, Vol. 69, No. 1, 07.1987, p. 126-134.

Research output: Contribution to journalArticle

Harvard

Irvine, JTS & West, AR 1987, 'Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4', Journal of Solid State Chemistry, vol. 69, no. 1, pp. 126-134. https://doi.org/10.1016/0022-4596(87)90018-1

APA

Irvine, J. T. S., & West, A. R. (1987). Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4. Journal of Solid State Chemistry, 69(1), 126-134. https://doi.org/10.1016/0022-4596(87)90018-1

Vancouver

Irvine JTS, West AR. Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4. Journal of Solid State Chemistry. 1987 Jul;69(1):126-134. https://doi.org/10.1016/0022-4596(87)90018-1

Author

Irvine, J. T.S. ; West, A. R. / Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4. In: Journal of Solid State Chemistry. 1987 ; Vol. 69, No. 1. pp. 126-134.

Bibtex - Download

@article{5533d8f8cefd4af09bd107c585005ccf,
title = "Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4",
abstract = "In the system Na3PO4Na2SO4, the high-temperature, cubic γ form of Na3PO4 forms an extensive range of solid solutions: Na3-x(P1-xSx)O4, 0 < x < (0.57 to 0.70, depending on temperature). For compositions in the range x = ca. 0.33 to 0.57, these γ solid solutions are thermodynamically stable at all temperatures. The conductivity of the γ solid solutions increases with increasing x and reaches a maximum at x = 0.5 to 0.6, with values of 2 × 10-5 ohm-1 cm-1 at 100°C, rising to 1.3 × 10-2 ohm-1 cm-1 by 300°C; this conductivity increase with x is attributed to an increase in the sodium ion vacancy concentration, associated with the solid solution mechanism Na + PS. The phase diagram for the system Na3PO4Na2SO4 is given together with lattice parameters of the γ solid solutions.",
author = "Irvine, {J. T.S.} and West, {A. R.}",
year = "1987",
month = jul,
doi = "10.1016/0022-4596(87)90018-1",
language = "English",
volume = "69",
pages = "126--134",
journal = "Journal of Solid State Chemistry",
issn = "0022-4596",
publisher = "Academic Press Inc.",
number = "1",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4

AU - Irvine, J. T.S.

AU - West, A. R.

PY - 1987/7

Y1 - 1987/7

N2 - In the system Na3PO4Na2SO4, the high-temperature, cubic γ form of Na3PO4 forms an extensive range of solid solutions: Na3-x(P1-xSx)O4, 0 < x < (0.57 to 0.70, depending on temperature). For compositions in the range x = ca. 0.33 to 0.57, these γ solid solutions are thermodynamically stable at all temperatures. The conductivity of the γ solid solutions increases with increasing x and reaches a maximum at x = 0.5 to 0.6, with values of 2 × 10-5 ohm-1 cm-1 at 100°C, rising to 1.3 × 10-2 ohm-1 cm-1 by 300°C; this conductivity increase with x is attributed to an increase in the sodium ion vacancy concentration, associated with the solid solution mechanism Na + PS. The phase diagram for the system Na3PO4Na2SO4 is given together with lattice parameters of the γ solid solutions.

AB - In the system Na3PO4Na2SO4, the high-temperature, cubic γ form of Na3PO4 forms an extensive range of solid solutions: Na3-x(P1-xSx)O4, 0 < x < (0.57 to 0.70, depending on temperature). For compositions in the range x = ca. 0.33 to 0.57, these γ solid solutions are thermodynamically stable at all temperatures. The conductivity of the γ solid solutions increases with increasing x and reaches a maximum at x = 0.5 to 0.6, with values of 2 × 10-5 ohm-1 cm-1 at 100°C, rising to 1.3 × 10-2 ohm-1 cm-1 by 300°C; this conductivity increase with x is attributed to an increase in the sodium ion vacancy concentration, associated with the solid solution mechanism Na + PS. The phase diagram for the system Na3PO4Na2SO4 is given together with lattice parameters of the γ solid solutions.

U2 - 10.1016/0022-4596(87)90018-1

DO - 10.1016/0022-4596(87)90018-1

M3 - Article

AN - SCOPUS:0023383073

VL - 69

SP - 126

EP - 134

JO - Journal of Solid State Chemistry

JF - Journal of Solid State Chemistry

SN - 0022-4596

IS - 1

ER -

Related by author

  1. A new high-performance proton-conducting electrolyte for next-generation solid oxide fuel cells

    Radenahmad, N., Afif, A., Abdalla, A. M., Saqib, M., Park, J-Y., Zaini, J., Irvine, J., Hyun Kim, J. & Azad, A. K., 24 Jul 2020, In : Energy Technology. Early View, 2000486.

    Research output: Contribution to journalArticle

  2. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 22 Jul 2020, In : Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticle

  3. Atomic layer fluorination of 5 V class positive electrode material LiCoPO4 for enhanced electrochemical performance

    Kim, S., Kim, E. J., Charles-Blin, Y., Guérin, K., Dubois, M., Flahaut, D., Martinez, H., Deschamps, M., Miller, D. N., Irvine, J. T. S., Armstrong, R., Monconduit, L. & Louvain, N., 23 Jun 2020, In : Batteries and Supercaps. Early View

    Research output: Contribution to journalArticle

  4. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In : Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticle

  5. ‘All in one’ photo-reactor pod containing TiO2 coated glass beads and LEDs for continuous photocatalytic destruction of cyanotoxins in water

    Gunaratne, N., Pestana, C., Skillen, N., Hui, J., Rajendran, S., Edwards, C., Irvine, J. T. S., Robertson, P. & Lawton, L., Apr 2020, In : Environmental Science: Water Research & Technology. 6, 4, p. 945-950 5 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Cs7Sm11[TeO3]12Cl16 and Rb7Nd11[TeO3]12Br16, the new tellurite halides of the tetragonal Rb6LiNd11[SeO3]12Cl16 structure type

    Charkin, D. O., Black, C., Downie, L. J., Sklovsky, D. E., Berdonosov, P. S., Olenev, A. V., Zhou, W., Lightfoot, P. & Dolgikh, V. A., Dec 2015, In : Journal of Solid State Chemistry. 232, p. 56-61

    Research output: Contribution to journalArticle

  2. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell

    Jeong, J., Azad, A. K., Schlegl, H., Kim, B., Baek, S-W., Kim, K., Kang, H. & Kim, J. H., Mar 2015, In : Journal of Solid State Chemistry. 226, p. 154-163 10 p.

    Research output: Contribution to journalArticle

  3. Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3

    Dixon, C. A. L., Kavanagh, C. M., Knight, K. S., Kockelmann, W., Morrison, F. D. & Lightfoot, P., Oct 2015, In : Journal of Solid State Chemistry. 230, p. 337-342

    Research output: Contribution to journalArticle

  4. Structural, electrochemical and magnetic characterization of the layered-type PrBa0.5Sr0.5Co2O5+δ perovskite

    Azad, A. K., Irvine, J. T. S. & Kim, J., May 2014, In : Journal of Solid State Chemistry. 213, p. 268-274 7 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Solid State Chemistry (Journal)

    Finlay Morrison (Reviewer)

    2010 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

ID: 267131537

Top