Skip to content

Research at St Andrews

Solid-phase synthesis of recyclable diphosphine ligands

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Frank Heutz, Michiel Christiaan Samuels, Paul C J Kamer

School/Research organisations

Abstract

An efficient solid-phase synthetic approach towards diphosphine ligands is demonstrated. This modular method offers facile access to this important class of ligands, in quantitative yield, providing huge potential for ligand fine-tuning. These supported ligands can be efficiently applied in asymmetric catalysis. Moreover, the immobilized catalysts can successfully be recycled multiple times addressing several synthetic and work-up challenges in the field of catalytic chemistry.
Close

Details

Original languageEnglish
Pages (from-to)3296-3301
JournalCatalysis Science & Technology
Volume5
Issue number6
Early online date17 Apr 2015
DOIs
Publication statusPublished - 1 Jun 2015

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry Reaction

    Li, C., Dickson, R., Rockstroh, N., Rabeah, J., Cordes, D. B., Slawin, A. M. Z., Hünemörder, P., Spannenberg, A., Buehl, M., Mejía, E., Zysman-Colman, E. & Kamer, P. C. J., 18 Sep 2020, In: Catalysis Science & Technology. Advance Article, 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Effect of oxygen coordination environment of Ca-Mn oxides on catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural

    Yang, J., Yu, H., Wang, Y., Qi, F., Liu, H., Lou, L-L., Yu, K., Zhou, W. & Liu, S., 7 Dec 2019, In: Catalysis Science & Technology. 9, 23, p. 6659-6668

    Research output: Contribution to journalArticlepeer-review

  3. Photoredox catalysts based on Earth-abundant metal complexes

    Hockin, B., Li, C., Robertson, N. & Zysman-Colman, E., 21 Feb 2019, In: Catalysis Science & Technology. 9, 4, p. 889-915

    Research output: Contribution to journalArticlepeer-review

  4. Towards practical earth abundant reduction catalysis: design of improved catalysts for manganese catalysed hydrogenation

    Widegren, M. B. & Clarke, M. L., 7 Nov 2019, In: Catalysis Science & Technology. 9, 21, p. 6047-6058

    Research output: Contribution to journalArticlepeer-review

  5. Less hindered ligands give improved catalysts for the nickel catalysed Grignard cross-coupling of aromatic ethers

    Harkness, G. J. & Clarke, M. L., 7 Jan 2018, In: Catalysis Science & Technology. 8, 1, p. 328-334

    Research output: Contribution to journalArticlepeer-review

ID: 181756874

Top