Skip to content

Research at St Andrews

Sound exposure in harbour seals during the installation of an offshore wind farm: predictions of auditory damage

Research output: Contribution to journalArticle

Abstract

Summary
1. With ambitious renewable energy targets, pile driving associated with offshore wind farm construction will become widespread in the marine environment. Many proposed wind farms overlap with the distribution of seals, and sound from pile driving has the potential to cause auditory damage.
2. We report on a behavioural study during the construction of a wind farm using data from GPS/GSM tags on 24 harbour seals Phoca vitulina L. Pile driving data and acoustic propagation models, together with seal movement and dive data, allowed the prediction of auditory damage in each seal.
3. Growth and recovery functions for auditory damage were combined to predict temporary auditory threshold shifts in each seal. Further, M-weighted cumulative sound exposure levels [cSELs(Mpw)] were calculated and compared to permanent auditory threshold shift exposure criteria for pinnipeds in water exposed to pulsed sounds.
4. The closest distance of each seal to pile driving varied from 47 to 405 km, and predicted maximum cSELs(Mpw) ranged from 170.7 to 195.3 dB re 1μPa2 -s for individual seals. Comparison to exposure criteria suggests that half of the seals exceeded estimated permanent auditory damage thresholds.
5. Prediction of auditory damage in marine mammals is a rapidly evolving field and has number of key uncertainties associated with it. These include how sound propagates in shallow water environments and the effects of pulsed sounds on seal hearing; as such, our predictions should be viewed in this context.
6. Policy implications. We predicted that half of the tagged seals received sound levels from pile driving that exceeded auditory damage thresholds for pinnipeds. These results have implications for offshore industry and will be important for policymakers developing guidance for pile driving. Developing engineering solutions to reduce sound levels at source or methods to deter animals from damage risk zones, or changing temporal patterns of piling could potentially
reduce auditory damage risk. Future work should focus on validating these predictions by collecting auditory threshold information pre- and post-exposure to pile driving. Ultimately, information on population-level impacts of exposure to pile driving is required to ensure that offshore industry is developed in an environmentally sustainable manner.

Close

Details

Original languageEnglish
Pages (from-to)631-640
JournalJournal of Applied Ecology
Volume52
Issue number3
Early online date20 May 2015
DOIs
Publication statusPublished - Jun 2015

    Research areas

  • Wind farms, Hearing, Marine animals, Pile driving, Pinnipeds, Renewable energy, Underwater noise

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Marine mammals trace anthropogenic structures at sea

    Russell, D. J. F., Brasseur, S., Thompson, D., Hastie, G. D., Janik, V. M., Aarts, G., McClintock, B. T., Matthiopoulos, J., Moss, S. & McConnell, B. J., 21 Jul 2014, In : Current Biology. 24, 14, p. R638-R639 2 p.

    Research output: Contribution to journalArticle

  2. Effects of impulsive noise on marine mammals: investigating range-dependent risk

    Hastie, G., Merchant, N., Goetz, T., Russell, D. J. F., Thompson, P. & Janik, V. M., Jul 2019, In : Ecological Applications. 29, 5, 10 p., e01906.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Applied Ecology (Journal)

    Jason Matthiopoulos (Editor)
    2007 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Empirical determination of severe trauma in seals from collisions with tidal turbine blades

    Onoufriou, J., Brownlow, A., Moss, S., Hastie, G. & Thompson, D., 14 May 2019, In : Journal of Applied Ecology. Early View, 13 p.

    Research output: Contribution to journalArticle

  2. Harbour seals avoid tidal turbine noise: implications for collision risk

    Hastie, G. D., Russell, D. J. F., Lepper, P., Elliott, J., Wilson, B., Benjamins, S. & Thompson, D., Mar 2018, In : Journal of Applied Ecology. 55, 2, p. 684-693 10 p.

    Research output: Contribution to journalArticle

  3. Marine mammals and sonar: dose-response studies, the risk-disturbance hypothesis and the role of exposure context

    Harris, C. M., Thomas, L., Falcone, E., Hildebrand, J., Houser, D., Kvadsheim, P., Lam, F-P. A., Miller, P., Moretti, D. J., Read, A., Slabbekoorn, H., Southall, B. L., Tyack, P. L., Wartzok, D. & Janik, V. M., Jan 2018, In : Journal of Applied Ecology. 55, 1, p. 396-404

    Research output: Contribution to journalReview article

  4. Counting chirps: acoustic monitoring of cryptic frogs

    Measey, G. J., Stevenson, B. C., Scott, T., Altwegg, R. & Borchers, D. L., Jun 2017, In : Journal of Applied Ecology. 54, 3, p. 894-902 9 p.

    Research output: Contribution to journalArticle

  5. Seals and shipping: quantifying population risk and individual exposure to vessel noise

    Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L. & Thompson, D., Dec 2017, In : Journal of Applied Ecology. 54, 6, p. 1930-1940

    Research output: Contribution to journalArticle

ID: 158288181